Suppr超能文献

一种基于脑电图(EEG)的帕金森病准确检测的混合卷积-Transformer方法。

A Hybrid Convolutional-Transformer Approach for Accurate Electroencephalography (EEG)-Based Parkinson's Disease Detection.

作者信息

Bunterngchit Chayut, Baniata Laith H, Albayati Hayder, Baniata Mohammad H, Alharbi Khalid, Alshammari Fanar Hamad, Kang Sangwoo

机构信息

Division of Industrial and Logistics Engineering Technology, Faculty of Engineering and Technology, King Mongkut's University of Technology North Bangkok, Rayong Campus, Rayong 21120, Thailand.

School of Computing, Gachon University, Seongnam 13120, Republic of Korea.

出版信息

Bioengineering (Basel). 2025 May 28;12(6):583. doi: 10.3390/bioengineering12060583.

Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and cognitive impairments. Early detection is critical for effective intervention, but current diagnostic methods often lack accuracy and generalizability. Electroencephalography (EEG) offers a noninvasive means to monitor neural activity, revealing abnormal brain oscillations linked to PD pathology. However, deep learning models for EEG analysis frequently struggle to balance high accuracy with robust generalization across diverse patient populations. To overcome these challenges, this study proposes a convolutional transformer enhanced sequential model (CTESM), which integrates convolutional neural networks, transformer attention blocks, and long short-term memory layers to capture spatial, temporal, and sequential EEG features. Enhanced by biologically informed feature extraction techniques, including spectral power analysis, frequency band ratios, wavelet transforms, and statistical measures, the model was trained and evaluated on a publicly available EEG dataset comprising 31 participants (15 with PD and 16 healthy controls), recorded using 40 channels at a 500 Hz sampling rate. The CTESM achieved an exceptional classification accuracy of 99.7% and demonstrated strong generalization on independent test datasets. Rigorous evaluation across distinct training, validation, and testing phases confirmed the model's robustness, stability, and predictive precision. These results highlight the CTESM's potential for clinical deployment in early PD diagnosis, enabling timely therapeutic interventions and improved patient outcomes.

摘要

帕金森病(PD)是一种进行性神经退行性疾病,其特征为运动和认知障碍。早期检测对于有效干预至关重要,但目前的诊断方法往往缺乏准确性和通用性。脑电图(EEG)提供了一种监测神经活动的非侵入性手段,揭示了与PD病理相关的异常脑振荡。然而,用于EEG分析的深度学习模型常常难以在高精度与跨不同患者群体的强大通用性之间取得平衡。为了克服这些挑战,本研究提出了一种卷积变压器增强序列模型(CTESM),该模型整合了卷积神经网络、变压器注意力块和长短期记忆层,以捕捉空间、时间和序列EEG特征。通过包括频谱功率分析、频带比、小波变换和统计测量在内的基于生物学的特征提取技术进行增强,该模型在一个公开可用的EEG数据集上进行了训练和评估,该数据集包含31名参与者(15名PD患者和16名健康对照),以500Hz的采样率使用40个通道进行记录。CTESM实现了99.7%的卓越分类准确率,并在独立测试数据集上表现出强大的通用性。在不同的训练、验证和测试阶段进行的严格评估证实了该模型的稳健性、稳定性和预测精度。这些结果凸显了CTESM在早期PD诊断中临床应用的潜力,能够实现及时的治疗干预并改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28bf/12189856/c499cde339ce/bioengineering-12-00583-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验