Suppr超能文献

一种基于图卷积和注意力增强双向门控网络的轴承故障时空联合诊断框架

A Spatio-Temporal Joint Diagnosis Framework for Bearing Faults via Graph Convolution and Attention-Enhanced Bidirectional Gated Networks.

作者信息

Xiao Zhiguo, Cao Xinyao, Hao Huihui, Liang Siwen, Liu Junli, Li Dongni

机构信息

School of Computer Science & Technology, Beijing Institute of Technology, Beijing 100811, China.

College of Computer Science and Technology, Changchun University, Changchun 130022, China.

出版信息

Sensors (Basel). 2025 Jun 23;25(13):3908. doi: 10.3390/s25133908.

Abstract

In recent years, Academia and industry have conducted extensive and in-depth research on bearing-fault-diagnosis technology. However, the current modeling of time-space coupling characteristics in rolling bearing fault diagnosis remains inadequate, and the integration of multi-modal correlations requires further improvement. To address these challenges, this paper proposes a joint diagnosis framework integrating graph convolutional networks (GCNs) with attention-enhanced bidirectional gated recurrent units (BiGRUs). The proposed framework first constructs an improved K-nearest neighbor-based spatio-temporal graph to enhance multidimensional spatial-temporal feature modeling through GCN-based spatial feature extraction. Subsequently, we design an end-to-end spatio-temporal joint learning architecture by implementing a global attention-enhanced BiGRU temporal modeling module. This architecture achieves the deep fusion of spatio-temporal features through the graph-structural transformation of vibration signals and a feature cascading strategy, thereby improving overall model performance. The experiment demonstrated a classification accuracy of 97.08% on three public datasets including CWRU, verifying that this method decouples bearing signals through dynamic spatial topological modeling, effectively combines multi-scale spatiotemporal features for representation, and accurately captures the impact characteristics of bearing faults.

摘要

近年来,学术界和工业界对轴承故障诊断技术进行了广泛而深入的研究。然而,目前滚动轴承故障诊断中时空耦合特性的建模仍显不足,多模态相关性的融合也有待进一步改进。为应对这些挑战,本文提出了一种将图卷积网络(GCN)与注意力增强双向门控循环单元(BiGRU)相结合的联合诊断框架。所提出的框架首先构建一个基于改进的K近邻的时空图,通过基于GCN的空间特征提取来增强多维时空特征建模。随后,通过实现一个全局注意力增强的BiGRU时间建模模块,设计了一个端到端的时空联合学习架构。该架构通过振动信号的图结构变换和特征级联策略实现了时空特征的深度融合,从而提高了整体模型性能。实验表明,在包括CWRU在内的三个公共数据集上,该方法的分类准确率达到了97.08%,验证了该方法通过动态空间拓扑建模对轴承信号进行解耦,有效地结合多尺度时空特征进行表征,并准确捕捉轴承故障的冲击特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aad0/12252221/4abb1ab84fab/sensors-25-03908-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验