Suppr超能文献

NeSVoR:MRI 中用于切片到体素重建的隐式神经表示。

NeSVoR: Implicit Neural Representation for Slice-to-Volume Reconstruction in MRI.

出版信息

IEEE Trans Med Imaging. 2023 Jun;42(6):1707-1719. doi: 10.1109/TMI.2023.3236216. Epub 2023 Jun 1.

Abstract

Reconstructing 3D MR volumes from multiple motion-corrupted stacks of 2D slices has shown promise in imaging of moving subjects, e. g., fetal MRI. However, existing slice-to-volume reconstruction methods are time-consuming, especially when a high-resolution volume is desired. Moreover, they are still vulnerable to severe subject motion and when image artifacts are present in acquired slices. In this work, we present NeSVoR, a resolution-agnostic slice-to-volume reconstruction method, which models the underlying volume as a continuous function of spatial coordinates with implicit neural representation. To improve robustness to subject motion and other image artifacts, we adopt a continuous and comprehensive slice acquisition model that takes into account rigid inter-slice motion, point spread function, and bias fields. NeSVoR also estimates pixel-wise and slice-wise variances of image noise and enables removal of outliers during reconstruction and visualization of uncertainty. Extensive experiments are performed on both simulated and in vivo data to evaluate the proposed method. Results show that NeSVoR achieves state-of-the-art reconstruction quality while providing two to ten-fold acceleration in reconstruction times over the state-of-the-art algorithms.

摘要

从多个运动伪影的二维切片堆叠中重建三维 MR 体积,在对运动目标进行成像方面(例如,胎儿 MRI)显示出了前景。然而,现有的切片到体积重建方法非常耗时,尤其是在需要高分辨率体积时。此外,它们仍然容易受到严重的主体运动和获取的切片中存在图像伪影的影响。在这项工作中,我们提出了 NeSVoR,这是一种与分辨率无关的切片到体积重建方法,它使用隐式神经表示将底层体积建模为空间坐标的连续函数。为了提高对主体运动和其他图像伪影的鲁棒性,我们采用了一种连续的、全面的切片采集模型,该模型考虑了刚性切片间运动、点扩散函数和偏置场。NeSVoR 还估计了图像噪声的像素和切片方差,并在重建和可视化不确定性期间启用了异常值的剔除。在模拟和体内数据上进行了广泛的实验,以评估所提出的方法。结果表明,NeSVoR 实现了最先进的重建质量,同时在重建时间上比最先进的算法快两到十倍。

相似文献

1
NeSVoR: Implicit Neural Representation for Slice-to-Volume Reconstruction in MRI.
IEEE Trans Med Imaging. 2023 Jun;42(6):1707-1719. doi: 10.1109/TMI.2023.3236216. Epub 2023 Jun 1.
3
Bias field inconsistency correction of motion-scattered multislice MRI for improved 3D image reconstruction.
IEEE Trans Med Imaging. 2011 Sep;30(9):1704-12. doi: 10.1109/TMI.2011.2143724. Epub 2011 Apr 19.
5
Reconstruction of fetal brain MRI with intensity matching and complete outlier removal.
Med Image Anal. 2012 Dec;16(8):1550-64. doi: 10.1016/j.media.2012.07.004. Epub 2012 Aug 9.
6
Fast Volume Reconstruction From Motion Corrupted Stacks of 2D Slices.
IEEE Trans Med Imaging. 2015 Sep;34(9):1901-13. doi: 10.1109/TMI.2015.2415453. Epub 2015 Mar 20.
7
Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI.
IEEE Trans Med Imaging. 2010 Oct;29(10):1739-58. doi: 10.1109/TMI.2010.2051680. Epub 2010 Jun 7.
9
Intersection based motion correction of multislice MRI for 3-D in utero fetal brain image formation.
IEEE Trans Med Imaging. 2010 Jan;29(1):146-58. doi: 10.1109/TMI.2009.2030679. Epub 2009 Sep 9.
10
SLIMM: Slice localization integrated MRI monitoring.
Neuroimage. 2020 Dec;223:117280. doi: 10.1016/j.neuroimage.2020.117280. Epub 2020 Aug 24.

引用本文的文献

2
Burst of gyrification in the human brain after birth.
Commun Biol. 2025 May 26;8(1):805. doi: 10.1038/s42003-025-08155-z.
3
Towards automatic US-MR fetal brain image registration with learning-based methods.
Neuroimage. 2025 Apr 15;310:121104. doi: 10.1016/j.neuroimage.2025.121104. Epub 2025 Mar 7.
6
NExpR: Neural Explicit Representation for fast arbitrary-scale medical image super-resolution.
Comput Biol Med. 2025 Jan;184:109354. doi: 10.1016/j.compbiomed.2024.109354. Epub 2024 Nov 26.
7
Multi-Sensor Learning Enables Information Transfer Across Different Sensory Data and Augments Multi-Modality Imaging.
IEEE Trans Pattern Anal Mach Intell. 2025 Jan;47(1):288-304. doi: 10.1109/TPAMI.2024.3465649. Epub 2024 Dec 4.
8
Site effects in multisite fetal brain MRI: morphological insights into early brain development.
Eur Radiol. 2025 Apr;35(4):1830-1842. doi: 10.1007/s00330-024-11084-w. Epub 2024 Sep 19.
9
Semantic redundancy-aware implicit neural compression for multidimensional biomedical image data.
Commun Biol. 2024 Sep 3;7(1):1081. doi: 10.1038/s42003-024-06788-0.
10
Fetal-BET: Brain Extraction Tool for Fetal MRI.
IEEE Open J Eng Med Biol. 2024 Jul 12;5:551-562. doi: 10.1109/OJEMB.2024.3426969. eCollection 2024.

本文引用的文献

1
SVoRT: Iterative Transformer for Slice-to-Volume Registration in Fetal Brain MRI.
Med Image Comput Comput Assist Interv. 2022 Sep;13436:3-13. doi: 10.1007/978-3-031-16446-0_1. Epub 2022 Sep 17.
2
STRESS: Super-Resolution for Dynamic Fetal MRI using Self-Supervised Learning.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12907:197-206. doi: 10.1007/978-3-030-87234-2_19. Epub 2021 Sep 21.
3
Semi-Supervised Learning for Fetal Brain MRI Quality Assessment with ROI consistency.
Med Image Comput Comput Assist Interv. 2020 Oct;12266:386-395. doi: 10.1007/978-3-030-59725-2_37. Epub 2020 Sep 29.
4
AFFIRM: Affinity Fusion-Based Framework for Iteratively Random Motion Correction of Multi-Slice Fetal Brain MRI.
IEEE Trans Med Imaging. 2023 Jan;42(1):209-219. doi: 10.1109/TMI.2022.3208277. Epub 2022 Dec 29.
5
Scan-Specific Generative Neural Network for MRI Super-Resolution Reconstruction.
IEEE Trans Med Imaging. 2022 Jun;41(6):1383-1399. doi: 10.1109/TMI.2022.3142610. Epub 2022 Jun 1.
6
Automated detection and reacquisition of motion-degraded images in fetal HASTE imaging at 3 T.
Magn Reson Med. 2022 Apr;87(4):1914-1922. doi: 10.1002/mrm.29106. Epub 2021 Dec 10.
7
Rapid head-pose detection for automated slice prescription of fetal-brain MRI.
Int J Imaging Syst Technol. 2021 Sep;31(3):1136-1154. doi: 10.1002/ima.22563. Epub 2021 Mar 1.
8
TorchIO: A Python library for efficient loading, preprocessing, augmentation and patch-based sampling of medical images in deep learning.
Comput Methods Programs Biomed. 2021 Sep;208:106236. doi: 10.1016/j.cmpb.2021.106236. Epub 2021 Jun 17.
10
Fetal Pose Estimation in Volumetric MRI using a 3D Convolution Neural Network.
Med Image Comput Comput Assist Interv. 2019 Oct;11767:403-410. doi: 10.1007/978-3-030-32251-9_44. Epub 2019 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验