Faghihpirayesh Razieh, Karimi Davood, Erdogmus Deniz, Gholipour Ali
Electrical and Computer Engineering DepartmentNortheastern University Boston MA 02115 USA.
Radiology DepartmentBoston Children's Hospital, and Harvard Medical School Boston MA 02115 USA.
IEEE Open J Eng Med Biol. 2024 Jul 12;5:551-562. doi: 10.1109/OJEMB.2024.3426969. eCollection 2024.
In this study, we address the critical challenge of fetal brain extraction from MRI sequences. Fetal MRI has played a crucial role in prenatal neurodevelopmental studies and in advancing our knowledge of fetal brain development . Fetal brain extraction is a necessary first step in most computational fetal brain MRI pipelines. However, it poses significant challenges due to 1) non-standard fetal head positioning, 2) fetal movements during examination, and 3) vastly heterogeneous appearance of the developing fetal brain and the neighboring fetal and maternal anatomy across gestation, and with various sequences and scanning conditions. Development of a machine learning method to effectively address this task requires a large and rich labeled dataset that has not been previously available. Currently, there is no method for accurate fetal brain extraction on various fetal MRI sequences. In this work, we first built a large annotated dataset of approximately 72,000 2D fetal brain MRI images. Our dataset covers the three common MRI sequences including T2-weighted, diffusion-weighted, and functional MRI acquired with different scanners. These data include images of normal and pathological brains. Using this dataset, we developed and validated deep learning methods, by exploiting the power of the U-Net style architectures, the attention mechanism, feature learning across multiple MRI modalities, and data augmentation for fast, accurate, and generalizable automatic fetal brain extraction. Evaluations on independent test data, including data available from other centers, show that our method achieves accurate brain extraction on heterogeneous test data acquired with different scanners, on pathological brains, and at various gestational stages. By leveraging rich information from diverse multi-modality fetal MRI data, our proposed deep learning solution enables precise delineation of the fetal brain on various fetal MRI sequences. The robustness of our deep learning model underscores its potential utility for fetal brain imaging.
在本研究中,我们应对了从MRI序列中提取胎儿大脑这一关键挑战。胎儿MRI在产前神经发育研究以及增进我们对胎儿大脑发育的了解方面发挥了至关重要的作用。胎儿大脑提取是大多数计算胎儿脑MRI流程中必要的第一步。然而,由于以下原因,它带来了重大挑战:1)胎儿头部位置不标准;2)检查过程中胎儿的运动;3)整个孕期发育中的胎儿大脑以及相邻的胎儿和母体解剖结构在外观上存在极大的异质性,且有各种序列和扫描条件。开发一种能有效解决此任务的机器学习方法需要一个此前并不存在的大规模且丰富的标注数据集。目前,尚无在各种胎儿MRI序列上进行准确胎儿大脑提取的方法。在这项工作中,我们首先构建了一个包含约72,000张二维胎儿脑MRI图像的大型标注数据集。我们的数据集涵盖了三种常见的MRI序列,包括用不同扫描仪获取的T2加权、扩散加权和功能MRI。这些数据包括正常和病理大脑的图像。利用这个数据集,我们通过利用U-Net风格架构的强大功能、注意力机制、跨多种MRI模态的特征学习以及数据增强,开发并验证了深度学习方法,以实现快速、准确且通用的自动胎儿大脑提取。对独立测试数据(包括其他中心提供的数据)的评估表明,我们的方法在使用不同扫描仪获取的异质测试数据、病理大脑以及不同孕周阶段都能实现准确的大脑提取。通过利用来自多样的多模态胎儿MRI数据的丰富信息,我们提出的深度学习解决方案能够在各种胎儿MRI序列上精确勾勒出胎儿大脑。我们深度学习模型的稳健性凸显了其在胎儿脑成像中的潜在效用。