Xu Junshen, Turk Esra Abaci, Grant P Ellen, Golland Polina, Adalsteinsson Elfar
Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA.
Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Boston, MA, USA.
Med Image Comput Comput Assist Interv. 2021 Sep-Oct;12907:197-206. doi: 10.1007/978-3-030-87234-2_19. Epub 2021 Sep 21.
Fetal motion is unpredictable and rapid on the scale of conventional MR scan times. Therefore, dynamic fetal MRI, which aims at capturing fetal motion and dynamics of fetal function, is limited to fast imaging techniques with compromises in image quality and resolution. Super-resolution for dynamic fetal MRI is still a challenge, especially when multi-oriented stacks of image slices for oversampling are not available and high temporal resolution for recording the dynamics of the fetus or placenta is desired. Further, fetal motion makes it difficult to acquire high-resolution images for supervised learning methods. To address this problem, in this work, we propose STRESS (patio-emporal esolution nhancement with imulated cans), a self-supervised super-resolution framework for dynamic fetal MRI with interleaved slice acquisitions. Our proposed method simulates an interleaved slice acquisition along the high-resolution axis on the originally acquired data to generate pairs of low- and high-resolution images. Then, it trains a super-resolution network by exploiting both spatial and temporal correlations in the MR time series, which is used to enhance the resolution of the original data. Evaluations on both simulated and data show that our proposed method outperforms other self-supervised super-resolution methods and improves image quality, which is beneficial to other downstream tasks and evaluations.
胎儿运动在传统磁共振扫描时间尺度上是不可预测且快速的。因此,旨在捕捉胎儿运动和胎儿功能动态的动态胎儿磁共振成像,仅限于采用快速成像技术,但图像质量和分辨率会有所折损。动态胎儿磁共振成像的超分辨率仍然是一个挑战,尤其是当无法获得用于过采样的多方向图像切片堆栈,且需要高时间分辨率来记录胎儿或胎盘动态时。此外,胎儿运动会使监督学习方法难以获取高分辨率图像。为了解决这个问题,在这项工作中,我们提出了STRESS(基于模拟扫描的时空分辨率增强),这是一种用于动态胎儿磁共振成像的自监督超分辨率框架,采用交错切片采集。我们提出的方法在原始采集的数据上沿高分辨率轴模拟交错切片采集,以生成低分辨率和高分辨率图像对。然后,通过利用磁共振时间序列中的空间和时间相关性来训练超分辨率网络,该网络用于提高原始数据的分辨率。对模拟数据和实际数据的评估表明,我们提出的方法优于其他自监督超分辨率方法,并提高了图像质量,这对其他下游任务和评估有益。