Suppr超能文献

基于光谱-空间分解的高光谱遥感图像去条带处理

Hyperspectral remote sensing image destriping via spectral-spatial factorization.

作者信息

Zhan Yapeng, Yu Qi, Liu Jiying, Wang Zhengming, Yang Zexi

机构信息

College of Science, National University of Defense Technology, Changsha, 410073, China.

出版信息

Sci Rep. 2025 Mar 18;15(1):9317. doi: 10.1038/s41598-025-94396-1.

Abstract

Hyperspectral images (HSIs) are gradually playing an important role in many fields because of their ability to obtain spectral information. However, sensor response differences and other reasons may lead to the generation of stripe noise in HSIs, which will greatly degrade the image quality. To solve the problem of HSIs destriping, a new iterative method via spectral-spatial factorization is proposed. We first rearrange the HSI data to get a new two-dimensional matrix. Then the original noise-free HSI is decomposed into a spectral information matrix and a spatial information matrix. The sparsity of stripe noise, the group sparsity of spatial information matrix, the smoothness of spectral information matrix can be used to achieve sufficient removal of stripe noise while effectively retaining spectral information and spatial details of the original HSI. Numerical tests on simulated datasets show that our method achieves an average PSNR growth above 4dB and a better SSIM result. The proposed method also obtains good results when processing real datasets polluted by Gaussian noise and stripe noise.

摘要

高光谱图像(HSIs)由于其获取光谱信息的能力,正在许多领域逐渐发挥重要作用。然而,传感器响应差异等原因可能导致高光谱图像中产生条纹噪声,这将大大降低图像质量。为了解决高光谱图像去条纹问题,提出了一种基于光谱 - 空间分解的新迭代方法。我们首先对高光谱图像数据进行重新排列以得到一个新的二维矩阵。然后将原始无噪声的高光谱图像分解为一个光谱信息矩阵和一个空间信息矩阵。利用条纹噪声的稀疏性、空间信息矩阵的组稀疏性以及光谱信息矩阵的平滑性,可以在有效保留原始高光谱图像的光谱信息和空间细节的同时,充分去除条纹噪声。在模拟数据集上的数值测试表明,我们的方法实现了平均峰值信噪比(PSNR)增长超过4dB,并且结构相似性指数测量(SSIM)结果更好。该方法在处理受高斯噪声和条纹噪声污染的真实数据集时也取得了良好的效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c05/11920236/20dafe7329de/41598_2025_94396_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验