Suppr超能文献

基于影像组学的肝内胆管癌个性化预后预测:应用与发展趋势

Personalized intrahepatic cholangiocarcinoma prognosis prediction using radiomics: Application and development trend.

作者信息

Chen Pengyu, Yang Zhenwei, Zhang Haofeng, Huang Guan, Li Qingshan, Ning Peigang, Yu Haibo

机构信息

Department of Hepatobiliary Surgery, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.

Department of Hepatobiliary Surgery, People's Hospital of Zhengzhou University, Zhengzhou, China.

出版信息

Front Oncol. 2023 Mar 23;13:1133867. doi: 10.3389/fonc.2023.1133867. eCollection 2023.

Abstract

Radiomics was proposed by Lambin et al. in 2012 and since then there has been an explosion of related research. There has been significant interest in developing high-throughput methods that can automatically extract a large number of quantitative image features from medical images for better diagnostic or predictive performance. There have also been numerous radiomics investigations on intrahepatic cholangiocarcinoma in recent years, but no pertinent review materials are readily available. This work discusses the modeling analysis of radiomics for the prediction of lymph node metastasis, microvascular invasion, and early recurrence of intrahepatic cholangiocarcinoma, as well as the use of deep learning. This paper briefly reviews the current status of radiomics research to provide a reference for future studies.

摘要

放射组学由兰宾等人于2012年提出,自那时以来相关研究呈爆发式增长。人们对开发高通量方法有着浓厚兴趣,这些方法能够从医学图像中自动提取大量定量图像特征,以获得更好的诊断或预测性能。近年来,也有许多关于肝内胆管癌的放射组学研究,但目前尚无现成的相关综述材料。本研究探讨了放射组学在预测肝内胆管癌淋巴结转移、微血管侵犯和早期复发方面的建模分析,以及深度学习的应用。本文简要回顾了放射组学的研究现状,为未来的研究提供参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c91/10076873/0f9c5e12050b/fonc-13-1133867-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验