From the School of Computing and Information, University of Pittsburgh, Pittsburgh, Pa (K.Y., Z.L.); Department of Electrical and Computer Engineering, Boston University, 8 St. Mary's St, Office 421, Boston, MA 02215 (S.G., K.B.); Department of Radiology, University of Pittsburgh, Pittsburgh, Pa (C.D.); and Chobanian & Avedisian School of Medicine, Boston University, Boston, Mass (C.B.P.).
Radiol Artif Intell. 2024 Sep;6(5):e230277. doi: 10.1148/ryai.230277.
Purpose To develop a machine learning approach for classifying disease progression in chest radiographs using weak labels automatically derived from radiology reports. Materials and Methods In this retrospective study, a twin neural network was developed to classify anatomy-specific disease progression into four categories: improved, unchanged, worsened, and new. A two-step weakly supervised learning approach was employed, pretraining the model on 243 008 frontal chest radiographs from 63 877 patients (mean age, 51.7 years ± 17.0 [SD]; 34 813 [55%] female) included in the MIMIC-CXR database and fine-tuning it on the subset with progression labels derived from consecutive studies. Model performance was evaluated for six pathologic observations on test datasets of unseen patients from the MIMIC-CXR database. Area under the receiver operating characteristic (AUC) analysis was used to evaluate classification performance. The algorithm is also capable of generating bounding-box predictions to localize areas of new progression. Recall, precision, and mean average precision were used to evaluate the new progression localization. One-tailed paired tests were used to assess statistical significance. Results The model outperformed most baselines in progression classification, achieving macro AUC scores of 0.72 ± 0.004 for atelectasis, 0.75 ± 0.007 for consolidation, 0.76 ± 0.017 for edema, 0.81 ± 0.006 for effusion, 0.7 ± 0.032 for pneumonia, and 0.69 ± 0.01 for pneumothorax. For new observation localization, the model achieved mean average precision scores of 0.25 ± 0.03 for atelectasis, 0.34 ± 0.03 for consolidation, 0.33 ± 0.03 for edema, and 0.31 ± 0.03 for pneumothorax. Conclusion Disease progression classification models were developed on a large chest radiograph dataset, which can be used to monitor interval changes and detect new pathologic conditions on chest radiographs. Prognosis, Unsupervised Learning, Transfer Learning, Convolutional Neural Network (CNN), Emergency Radiology, Named Entity Recognition © RSNA, 2024 See also commentary by Alves and Venkadesh in this issue.
目的 利用从放射报告中自动提取的弱标签,开发一种机器学习方法来对胸部 X 光片中的疾病进展进行分类。
材料与方法 本回顾性研究开发了一个双神经网络,将特定解剖结构的疾病进展分为 4 个类别:改善、不变、恶化和新发。采用两步弱监督学习方法,在包含 63877 名患者(平均年龄 51.7 岁±17.0[SD];34813[55%]女性)的 MIMIC-CXR 数据库中的 243008 张正位胸部 X 光片上对模型进行预训练,并使用来自连续研究的进展标签对亚组进行微调。在来自 MIMIC-CXR 数据库的未见患者测试数据集上评估模型在六种病理观察中的性能。使用接收器工作特征(ROC)曲线下面积(AUC)分析评估分类性能。该算法还能够生成边界框预测,以定位新进展的区域。使用召回率、精确率和平均精度来评估新进展的定位。使用单侧配对 t 检验评估统计显著性。
结果 该模型在疾病进展分类方面优于大多数基线模型,在肺不张、实变、水肿、胸腔积液、肺炎和气胸的分类中获得了 0.72±0.004、0.75±0.007、0.76±0.017、0.81±0.006、0.7±0.032 和 0.69±0.01 的宏 AUC 评分。对于新观察的定位,该模型在肺不张、实变、水肿和气胸方面的平均精度分别为 0.25±0.03、0.34±0.03、0.33±0.03 和 0.31±0.03。
结论 基于大型胸部 X 光数据集开发了疾病进展分类模型,可用于监测间隔变化和检测胸部 X 光片上新的病理情况。
预后、无监督学习、迁移学习、卷积神经网络(CNN)、紧急放射学、命名实体识别 ©RSNA,2024 也可参见本期 Alves 和 Venkadesh 的评论。