Suppr超能文献

利用多分辨率深度学习模型从组织病理学图像预测子宫内膜癌亚型和分子特征。

Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models.

机构信息

Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA.

Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.

出版信息

Cell Rep Med. 2021 Sep 23;2(9):100400. doi: 10.1016/j.xcrm.2021.100400. eCollection 2021 Sep 21.

Abstract

The determination of endometrial carcinoma histological subtypes, molecular subtypes, and mutation status is critical for the diagnostic process, and directly affects patients' prognosis and treatment. Sequencing, albeit slower and more expensive, can provide additional information on molecular subtypes and mutations that can be used to better select treatments. Here, we implement a customized multi-resolution deep convolutional neural network, Panoptes, that predicts not only the histological subtypes but also the molecular subtypes and 18 common gene mutations based on digitized H&E-stained pathological images. The model achieves high accuracy and generalizes well on independent datasets. Our results suggest that Panoptes, with further refinement, has the potential for clinical application to help pathologists determine molecular subtypes and mutations of endometrial carcinoma without sequencing.

摘要

确定子宫内膜癌的组织学亚型、分子亚型和突变状态对于诊断过程至关重要,并且直接影响患者的预后和治疗。测序虽然较慢且成本较高,但可以提供有关分子亚型和突变的更多信息,这些信息可用于更好地选择治疗方法。在这里,我们实施了一个定制的多分辨率深度卷积神经网络 Panoptes,它不仅可以预测组织学亚型,还可以基于数字化 H&E 染色的病理图像预测分子亚型和 18 种常见基因突变。该模型在独立数据集上实现了高精度和良好的泛化能力。我们的研究结果表明,经过进一步改进,Panoptes 有可能在临床上应用于帮助病理学家在不进行测序的情况下确定子宫内膜癌的分子亚型和突变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbcd/8484685/778acb0ac3fe/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验