Suppr超能文献

理解细胞迁移可塑性的驱动力。

Understanding the driving force for cell migration plasticity.

机构信息

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins University, Baltimore, Maryland.

Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins University, Baltimore, Maryland.

出版信息

Biophys J. 2023 Sep 19;122(18):3570-3576. doi: 10.1016/j.bpj.2023.04.008. Epub 2023 Apr 11.

Abstract

Cell migration is a complex phenomenon. Not only do different cells migrate in different default modes, but the same cell can also change its migration mode to adapt to different terrains. This complexity has riddled cell biologists and biophysicists for decades in that, despite the development of many powerful tools over the past 30 years, how cells move is still being actively investigated. This is because we have yet to fully understand the mystery of cell migration plasticity, particularly the reciprocal relation between force generation and migration mode transition. Herein we explore the future directions, in terms of measurement platforms and imaging-based techniques, to facilitate the undertaking of elucidating the relation between force generation machinery and migration mode transition. By briefly reviewing the evolution of the platforms and techniques developed in the past, we propose the desirable features to be added to achieve high measurement accuracy and improved temporal and spatial resolution, permitting us to unveil the mystery of cell migration plasticity.

摘要

细胞迁移是一种复杂的现象。不仅不同的细胞以不同的默认模式迁移,而且同一细胞也可以改变其迁移模式以适应不同的地形。这种复杂性困扰了细胞生物学家和生物物理学家几十年,尽管在过去的 30 年中开发了许多强大的工具,但细胞如何运动仍在积极研究中。这是因为我们尚未完全了解细胞迁移可塑性的奥秘,特别是力的产生和迁移模式转变之间的相互关系。在此,我们探讨了未来的测量平台和基于成像的技术方向,以促进阐明力产生机制和迁移模式转变之间的关系。通过简要回顾过去开发的平台和技术的演变,我们提出了需要添加的理想特征,以实现高精度测量和提高时间和空间分辨率,从而揭示细胞迁移可塑性的奥秘。

相似文献

1
Understanding the driving force for cell migration plasticity.理解细胞迁移可塑性的驱动力。
Biophys J. 2023 Sep 19;122(18):3570-3576. doi: 10.1016/j.bpj.2023.04.008. Epub 2023 Apr 11.
4
Actin cytoskeleton in mesenchymal-to-amoeboid transition of cancer cells.细胞骨架在肿瘤细胞间质-上皮转化中的作用。
Int Rev Cell Mol Biol. 2020;356:197-256. doi: 10.1016/bs.ircmb.2020.06.002. Epub 2020 Jul 16.
6
Mechanics of developmental migration.发育迁移的力学
Semin Cell Dev Biol. 2021 Dec;120:66-74. doi: 10.1016/j.semcdb.2021.07.002. Epub 2021 Jul 16.
7
Mechanical waves caused by collective cell migration: generation.机械波由细胞集体迁移引起:产生。
Eur Biophys J. 2022 Jan;51(1):1-13. doi: 10.1007/s00249-021-01581-x. Epub 2022 Jan 24.
8
Migration and 3D Traction Force Measurements inside Compliant Microchannels.在顺应性微通道内的迁移和 3D 牵引力测量。
Nano Lett. 2022 Sep 28;22(18):7318-7327. doi: 10.1021/acs.nanolett.2c01261. Epub 2022 Sep 15.

本文引用的文献

1
Membrane Ruffling is a Mechanosensor of Extracellular Fluid Viscosity.膜皱褶是细胞外液黏度的一种机械传感器。
Nat Phys. 2022 Sep;18(9):1112-1121. doi: 10.1038/s41567-022-01676-y. Epub 2022 Jul 25.
3
Non-muscle myosin II and the plasticity of 3D cell migration.非肌肉肌球蛋白II与三维细胞迁移的可塑性
Front Cell Dev Biol. 2022 Nov 10;10:1047256. doi: 10.3389/fcell.2022.1047256. eCollection 2022.
6
Migration and 3D Traction Force Measurements inside Compliant Microchannels.在顺应性微通道内的迁移和 3D 牵引力测量。
Nano Lett. 2022 Sep 28;22(18):7318-7327. doi: 10.1021/acs.nanolett.2c01261. Epub 2022 Sep 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验