IEEE J Biomed Health Inform. 2023 Jul;27(7):3537-3548. doi: 10.1109/JBHI.2023.3266576. Epub 2023 Jun 30.
Glaucoma is one of the leading causes of irreversible blindness. Segmentation of optic disc (OD) and optic cup (OC) on fundus images is a crucial step in glaucoma screening. Although many deep learning models have been constructed for this task, it remains challenging to train an OD/OC segmentation model that could be deployed successfully to different healthcare centers. The difficulties mainly comes from the domain shift issue, i.e., the fundus images collected at these centers usually vary greatly in the tone, contrast, and brightness. To address this issue, in this paper, we propose a novel unsupervised domain adaptation (UDA) method called Reconstruction-driven Dynamic Refinement Network (RDR-Net), where we employ a due-path segmentation backbone for simultaneous edge detection and region prediction and design three modules to alleviate the domain gap. The reconstruction alignment (RA) module uses a variational auto-encoder (VAE) to reconstruct the input image and thus boosts the image representation ability of the network in a self-supervised way. It also uses a style-consistency constraint to force the network to retain more domain-invariant information. The low-level feature refinement (LFR) module employs input-specific dynamic convolutions to suppress the domain-variant information in the obtained low-level features. The prediction-map alignment (PMA) module elaborates the entropy-driven adversarial learning to encourage the network to generate source-like boundaries and regions. We evaluated our RDR-Net against state-of-the-art solutions on four public fundus image datasets. Our results indicate that RDR-Net is superior to competing models in both segmentation performance and generalization ability.
青光眼是导致不可逆性失明的主要原因之一。眼底图像的视盘(OD)和视杯(OC)分割是青光眼筛查的关键步骤。尽管已经构建了许多深度学习模型来完成这项任务,但训练一个能够成功部署到不同医疗机构的 OD/OC 分割模型仍然具有挑战性。困难主要来自于领域迁移问题,即这些中心采集的眼底图像在色调、对比度和亮度上通常有很大差异。为了解决这个问题,在本文中,我们提出了一种新的无监督领域自适应(UDA)方法,称为重建驱动动态细化网络(RDR-Net),我们使用一个有向路径分割骨干网络同时进行边缘检测和区域预测,并设计了三个模块来缓解领域差距。重建对齐(RA)模块使用变分自动编码器(VAE)重建输入图像,从而以自监督的方式提高网络的图像表示能力。它还使用样式一致性约束来迫使网络保留更多的域不变信息。低级特征细化(LFR)模块采用特定于输入的动态卷积来抑制获得的低级特征中的域变化信息。预测图对齐(PMA)模块采用基于熵的对抗学习来鼓励网络生成源相似的边界和区域。我们在四个公共眼底图像数据集上对我们的 RDR-Net 与最先进的解决方案进行了评估。我们的结果表明,RDR-Net 在分割性能和泛化能力方面均优于竞争模型。