College of Information Science and Engineering, Northeastern University, Liaoning, 110819, China.
Faculty of Robot Science and Engineering, Northeastern University, Liaoning, 110819, China.
J Digit Imaging. 2022 Jun;35(3):638-653. doi: 10.1007/s10278-021-00579-3. Epub 2022 Feb 25.
Automatic and accurate segmentation of optic disc (OD) and optic cup (OC) in fundus images is a fundamental task in computer-aided ocular pathologies diagnosis. The complex structures, such as blood vessels and macular region, and the existence of lesions in fundus images bring great challenges to the segmentation task. Recently, the convolutional neural network-based methods have exhibited its potential in fundus image analysis. In this paper, we propose a cascaded two-stage network architecture for robust and accurate OD and OC segmentation in fundus images. In the first stage, the U-Net like framework with an improved attention mechanism and focal loss is proposed to detect accurate and reliable OD location from the full-scale resolution fundus images. Based on the outputs of the first stage, a refined segmentation network in the second stage that integrates multi-task framework and adversarial learning is further designed for OD and OC segmentation separately. The multi-task framework is conducted to predict the OD and OC masks by simultaneously estimating contours and distance maps as auxiliary tasks, which can guarantee the smoothness and shape of object in segmentation predictions. The adversarial learning technique is introduced to encourage the segmentation network to produce an output that is consistent with the true labels in space and shape distribution. We evaluate the performance of our method using two public retinal fundus image datasets (RIM-ONE-r3 and REFUGE). Extensive ablation studies and comparison experiments with existing methods demonstrate that our approach can produce competitive performance compared with state-of-the-art methods.
自动且准确地分割眼底图像中的视盘(OD)和视杯(OC)是计算机辅助眼病诊断中的基本任务。眼底图像中存在复杂的结构,如血管和黄斑区域,以及病变,这给分割任务带来了很大的挑战。最近,基于卷积神经网络的方法在眼底图像分析中显示出了其潜力。在本文中,我们提出了一种级联的两阶段网络架构,用于稳健和准确地分割眼底图像中的 OD 和 OC。在第一阶段,我们提出了一个具有改进注意力机制和焦点损失的 U-Net 样框架,从全分辨率眼底图像中检测准确可靠的 OD 位置。基于第一阶段的输出,我们进一步设计了一个在第二阶段的细化分割网络,该网络集成了多任务框架和对抗学习,分别用于 OD 和 OC 的分割。多任务框架通过同时估计轮廓和距离图作为辅助任务来预测 OD 和 OC 掩模,这可以保证分割预测中物体的平滑度和形状。对抗学习技术被引入到分割网络中,以鼓励分割网络生成与真实标签在空间和形状分布上一致的输出。我们使用两个公共的视网膜眼底图像数据集(RIM-ONE-r3 和 REFUGE)来评估我们的方法的性能。广泛的消融研究和与现有方法的比较实验表明,与最先进的方法相比,我们的方法可以产生具有竞争力的性能。