Suppr超能文献

视觉转换器、集成模型和迁移学习利用可解释人工智能进行脑肿瘤检测和分类。

Vision Transformers, Ensemble Model, and Transfer Learning Leveraging Explainable AI for Brain Tumor Detection and Classification.

出版信息

IEEE J Biomed Health Inform. 2024 Mar;28(3):1261-1272. doi: 10.1109/JBHI.2023.3266614. Epub 2024 Mar 6.

Abstract

The abnormal growth of malignant or nonmalignant tissues in the brain causes long-term damage to the brain. Magnetic resonance imaging (MRI) is one of the most common methods of detecting brain tumors. To determine whether a patient has a brain tumor, MRI filters are physically examined by experts after they are received. It is possible for MRI images examined by different specialists to produce inconsistent results since professionals formulate evaluations differently. Furthermore, merely identifying a tumor is not enough. To begin treatment as soon as possible, it is equally important to determine the type of tumor the patient has. In this paper, we consider the multiclass classification of brain tumors since significant work has been done on binary classification. In order to detect tumors faster, more unbiased, and reliably, we investigated the performance of several deep learning (DL) architectures including Visual Geometry Group 16 (VGG16), InceptionV3, VGG19, ResNet50, InceptionResNetV2, and Xception. Following this, we propose a transfer learning(TL) based multiclass classification model called IVX16 based on the three best-performing TL models. We use a dataset consisting of a total of 3264 images. Through extensive experiments, we achieve peak accuracy of 95.11%, 93.88%, 94.19%, 93.88%, 93.58%, 94.5%, and 96.94% for VGG16, InceptionV3, VGG19, ResNet50, InceptionResNetV2, Xception, and IVX16, respectively. Furthermore, we use Explainable AI to evaluate the performance and validity of each DL model and implement recently introduced Vison Transformer (ViT) models and compare their obtained output with the TL and ensemble model.

摘要

脑内恶性或非恶性组织的异常生长会对大脑造成长期损害。磁共振成像(MRI)是检测脑肿瘤最常用的方法之一。为了确定患者是否患有脑肿瘤,收到后由专家对 MRI 滤波器进行物理检查。由于专业人员的评估方式不同,不同专家检查的 MRI 图像可能会产生不一致的结果。此外,仅仅识别出肿瘤是不够的。为了尽快开始治疗,同样重要的是确定患者患有哪种类型的肿瘤。在本文中,我们考虑对脑肿瘤进行多类分类,因为已经对二进制分类进行了大量工作。为了更快、更公正、更可靠地检测肿瘤,我们研究了几种深度学习(DL)架构的性能,包括 Visual Geometry Group 16(VGG16)、InceptionV3、VGG19、ResNet50、InceptionResNetV2 和 Xception。在此基础上,我们提出了一种基于迁移学习(TL)的多类分类模型,称为基于三个表现最好的 TL 模型的 IVX16。我们使用一个包含总共 3264 张图像的数据集。通过广泛的实验,我们分别为 VGG16、InceptionV3、VGG19、ResNet50、InceptionResNetV2、Xception 和 IVX16 实现了 95.11%、93.88%、94.19%、93.88%、93.58%、94.5%和 96.94%的峰值精度。此外,我们使用可解释人工智能来评估每个 DL 模型的性能和有效性,并实现最近引入的 Vision Transformer(ViT)模型,并将它们的输出与 TL 和集成模型进行比较。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验