Li Guiyin, Zhou Zhide, Wang Zhongmin, Chen Shiwei, Liang Jintao, Yao Xiaoqing, Li Liuxun
College of Chemistry, Guangdong University of Petrochemical Technology, Guandu Road, Maoming 525000, China.
School of Life and Environmental Sciences, Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China.
Materials (Basel). 2023 Mar 30;16(7):2786. doi: 10.3390/ma16072786.
1,5-Anhydroglucitol (1,5-AG) is a sensitive biomarker for real-time detection of diabetes mellitus. In this study, an electrochemical biosensor to specifically detect 1,5-AG levels based on persimmon-tannin-reduced graphene oxide-PtPd nanocomposites (PT-rGO-PtPd NCs), which were modified onto the surface of a screen-printed carbon electrode (SPCE), was designed. The PT-rGO-PtPd NCs were prepared by using PT as the film-forming material and ascorbic acid as the reducing agent. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-vis), and X-ray diffraction (XRD) spectroscopy analysis were used to characterise the newly synthesised materials. PT-rGO-PtPd NCs present a synergistic effect not only to increase the active surface area to bio-capture more targets, but also to exhibit electrocatalytic efficiency to catalyze the decomposition of hydrogen peroxide (HO). A sensitive layer is formed by pyranose oxidase (PROD) attached to the surface of PT-rGO-PtPd NC/SPCE. In the presence of 1,5-AG, PROD catalyzes the oxidization of 1,5-AG to generate 1,5-anhydrofuctose (1,5-AF) and HO which can be decomposed into HO under the synergistic catalysis of PT-rGO-PtPd NCs. The redox reaction between PT and its oxidative product (quinones, PTox) can be enhanced simultaneously by PT-rGO-PtPd NCs, and the current signal was recorded by the differential pulse voltammetry (DPV) method. Under optimal conditions, our biosensor shows a wide range (0.1-2.0 mg/mL) for 1,5-AG detection with a detection limit of 30 μg/mL (S/N = 3). Moreover, our electrochemical biosensor exhibits acceptable applicability with recoveries from 99.80 to 106.80%. In summary, our study provides an electrochemical method for the determination of 1,5-AG with simple procedures, lower costs, good reproducibility, and acceptable stability.
1,5-脱水葡萄糖醇(1,5-AG)是用于糖尿病实时检测的一种敏感生物标志物。在本研究中,设计了一种基于柿单宁还原氧化石墨烯-PtPd纳米复合材料(PT-rGO-PtPd NCs)特异性检测1,5-AG水平的电化学生物传感器,该复合材料修饰在丝网印刷碳电极(SPCE)表面。PT-rGO-PtPd NCs通过使用PT作为成膜材料、抗坏血酸作为还原剂制备而成。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、紫外可见光谱(UV-vis)和X射线衍射(XRD)光谱分析对新合成的材料进行表征。PT-rGO-PtPd NCs不仅呈现协同效应以增加活性表面积从而生物捕获更多靶标,而且表现出电催化效率以催化过氧化氢(HO)分解。通过附着在PT-rGO-PtPd NC/SPCE表面的吡喃糖氧化酶(PROD)形成敏感层。在1,5-AG存在的情况下,PROD催化1,5-AG氧化生成1,5-脱水果糖(1,5-AF)和HO,HO在PT-rGO-PtPd NCs的协同催化下可分解为HO。PT-rGO-PtPd NCs可同时增强PT与其氧化产物(醌类,PTox)之间的氧化还原反应,并通过差分脉冲伏安法(DPV)记录电流信号。在最佳条件下,我们的生物传感器对1,5-AG的检测范围很宽(0.1 - 2.0 mg/mL),检测限为30 μg/mL(S/N = 3)。此外,我们的电化学生物传感器具有可接受的适用性,回收率在99.80%至106.80%之间。总之,我们的研究提供了一种测定1,5-AG的电化学方法,该方法程序简单、成本较低、重现性好且稳定性可接受。