Suppr超能文献

使用机器学习预测老年患者髋关节置换术后的术后谵妄。

Predicting postoperative delirium after hip arthroplasty for elderly patients using machine learning.

机构信息

Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Aging Clin Exp Res. 2023 Jun;35(6):1241-1251. doi: 10.1007/s40520-023-02399-7. Epub 2023 Apr 13.

Abstract

BACKGROUND

Postoperative delirium (POD) is a common and severe complication in elderly hip-arthroplasty patients.

AIM

This study aims to develop and validate a machine learning (ML) model that determines essential features related to POD and predicts POD for elderly hip-arthroplasty patients.

METHODS

The electronic record data of elderly patients who received hip-arthroplasty surgery between January 2017 and April 2021 were enrolled as the dataset. The Confusion Assessment Method (CAM) was administered to the patients during their perioperative period. The feature section method was employed as a filter to determine leading features. The classical machine learning algorithms were trained in cross-validation processing, and the model with the best performance was built in predicting the POD. Metrics of the area under the curve (AUC), accuracy (ACC), sensitivity, specificity, and F1-score were calculated to evaluate the predictive performance.

RESULTS

476 Arthroplasty elderly patients with general anesthesia were included in this study, and the final model combined feature selection method mutual information (MI) and linear binary classifier using logistic regression (LR) achieved an encouraging performance (AUC = 0.94, ACC = 0.88, sensitivity = 0.85, specificity = 0.90, F1-score = 0.87) on a balanced test dataset.

CONCLUSION

The model could predict POD with satisfying accuracy and reveal important features of suffering POD such as age, Cystatin C, GFR, CHE, CRP, LDH, monocyte count, history of mental illness or psychotropic drug use and intraoperative blood loss. Proper preoperative interventions for these factors could reduce the incidence of POD among elderly patients.

摘要

背景

术后谵妄(POD)是老年髋部置换术患者常见且严重的并发症。

目的

本研究旨在开发和验证一种机器学习(ML)模型,确定与 POD 相关的基本特征,并预测老年髋部置换术患者的 POD。

方法

纳入 2017 年 1 月至 2021 年 4 月接受髋部置换术的老年患者的电子病历数据作为数据集。在围手术期对患者进行意识混乱评估方法(CAM)。采用特征选择方法作为过滤器来确定主要特征。使用交叉验证处理对经典机器学习算法进行训练,并构建预测 POD 的最佳性能模型。计算曲线下面积(AUC)、准确率(ACC)、敏感度、特异性和 F1 评分等指标来评估预测性能。

结果

本研究共纳入 476 例接受全身麻醉的髋部置换术老年患者,最终模型结合特征选择方法互信息(MI)和使用逻辑回归(LR)的线性二进制分类器,在平衡测试数据集上取得了令人鼓舞的性能(AUC=0.94,ACC=0.88,敏感度=0.85,特异性=0.90,F1 评分=0.87)。

结论

该模型可以预测 POD,具有令人满意的准确性,并揭示了患有 POD 的重要特征,如年龄、胱抑素 C、GFR、CHE、CRP、LDH、单核细胞计数、精神疾病或精神药物使用史和术中失血量。对这些因素进行适当的术前干预可以降低老年患者 POD 的发生率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验