Suppr超能文献

髋关节置换术中围手术期神经认知障碍多种模型的开发与验证比较

Development and validation comparison of multiple models for perioperative neurocognitive disorders during hip arthroplasty.

作者信息

Wang Gang, Xie Yi, Bai XiaRui, Zhang Yuming, Guo Jiao

机构信息

Department of Anesthesiology, Department of Emergency Surgery, Shaanxi Provincial People's Hospital, Youyi West Road No. 256, Beilin District, Xi'an, 710000, China.

Faculty of Business, The Hong Kong Polytechnic University, Kowloon, China.

出版信息

Sci Rep. 2025 Mar 19;15(1):9393. doi: 10.1038/s41598-025-93324-7.

Abstract

This study aims to develop optimal predictive models for perioperative neurocognitive disorders (PND) in hip arthroplasty patients, thereby advancing clinical practice. Data from all hip arthroplasty patients in the MIMIC-IV database were utilized to predict PND. With 62 variables, we applied multiple logistic regression, artificial neural network (ANN), Naive Bayes, support vector machine, and decision tree (XgBoost) algorithms to forecast PND. Feature analysis, receiver operating characteristic curve (ROC) and calibration curve plotting, and sensitivity, specificity, and F-measure β = 1 (F1-score) assessments were conducted on both training and validation sets for classifying models' effectiveness. Brier score and Index of prediction accuracy (IPA) were employed to compare prediction capabilities in both sets. Among 3,292 hip arthroplasty patients in the MIMIC database, 331 developed PND. Five models using different algorithms were constructed. After thorough comparison and validation, the ANN model emerged as the most effective model. Performance metrics on the training set for the ANN model were: ROC: 0.954, Accuracy: 0.938, Precision: 0.758, F1-score: 0.657, Brier Score: 0.048, IPA: 90.8%. On the validation set, the ANN model performed as follows: ROC: 0.857, Accuracy: 0.903, Precision: 0.539, F1-score: 0.432, Brier Score: 0.071, IPA: 71.4%. An online visualization tool was developed ( https://xyyy.pythonanywhere.com/ ).

摘要

本研究旨在为髋关节置换术患者围手术期神经认知障碍(PND)开发最佳预测模型,从而推动临床实践。利用多中心重症医学信息数据库(MIMIC-IV)中所有髋关节置换术患者的数据来预测PND。我们应用多元逻辑回归、人工神经网络(ANN)、朴素贝叶斯、支持向量机和决策树(XgBoost)算法,基于62个变量来预测PND。对训练集和验证集均进行了特征分析、绘制受试者工作特征曲线(ROC)和校准曲线,以及评估灵敏度、特异性和F度量β = 1(F1分数),以分类模型的有效性。采用布里尔评分和预测准确性指数(IPA)来比较两组的预测能力。在MIMIC数据库的3292例髋关节置换术患者中,331例发生了PND。构建了5个使用不同算法的模型。经过全面比较和验证,ANN模型成为最有效的模型。ANN模型在训练集上的性能指标为:ROC:0.954,准确率:0.938,精确率:0.758,F1分数:0.657,布里尔评分:0.048,IPA:90.8%。在验证集上,ANN模型的表现如下:ROC:0.857,准确率:0.903,精确率:0.539,F1分数:0.432,布里尔评分:0.071,IPA:71.4%。开发了一个在线可视化工具(https://xyyy.pythonanywhere.com/)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b977/11920437/ba5c88db2ed5/41598_2025_93324_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验