Franke Mareena C, Longley Victoria R, Rafiee Mohammad, Stahl Shannon S, Hansen Eric C, Weix Daniel J
Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA.
Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 USA.
ACS Catal. 2022 Oct 21;12(20):12617-12626. doi: 10.1021/acscatal.2c03033. Epub 2022 Oct 3.
Nickel-catalyzed reductive cross-electrophile coupling reactions are becoming increasingly important in organic synthesis, but application at scale is limited by three interconnected challenges: a reliance on amide solvents (complicated workup, regulated), the generation of stoichiometric Zn salts (complicated isolation, waste disposal issue), and mixing/activation challenges of zinc powder. We show here an electrochemical approach that addresses these three issues: the reaction works in acetonitrile with diisopropylethylamine as the terminal reductant in a simple undivided cell (graphite(+)/nickel foam(-)). The reaction utilizes a combination of two ligands, 4,4'-di--butyl-2,2'-bipyridine and 4,4',4''-tri--butyl-2,2':6',2''-terpyridine. Studies show that, alone, the bipyridine nickel catalyst predominantly forms protodehalogenated aryl and aryl dimer, whereas the terpyridine nickel catalyst predominantly forms bialkyl and product. By combining these two unselective catalysts, a tunable, general system results because excess radical formed by the terpyridine catalyst can be converted to product by the bipyridine catalyst. As the aryl bromide becomes more electron rich, the optimal ratio shifts to have more of the bipyridine nickel catalyst. Lastly, examination of a variety of flow-cell configurations establishes that batch recirculation can achieve higher productivity (mmol product/time/electrode area) than single-pass, that high flow rates are essential to maximizing current, and that two flow cells in parallel can nearly halve the reaction time. The resulting reaction is demonstrated on gram scale and should be scalable to kilogram scale.
镍催化的还原交叉亲电偶联反应在有机合成中变得越来越重要,但规模化应用受到三个相互关联的挑战的限制:依赖酰胺溶剂(后处理复杂、受管制)、化学计量的锌盐生成(分离复杂、存在废物处理问题)以及锌粉的混合/活化挑战。我们在此展示了一种电化学方法,可解决这三个问题:该反应在乙腈中以二异丙基乙胺作为终端还原剂,在简单的无隔膜电解池中(石墨(+)/泡沫镍(-))进行。该反应使用了两种配体的组合,即4,4'-二叔丁基-2,2'-联吡啶和4,4',4''-三叔丁基-2,2':6',2''-三联吡啶。研究表明,单独的联吡啶镍催化剂主要形成脱卤芳基和芳基二聚体,而三联吡啶镍催化剂主要形成双烷基产物。通过将这两种非选择性催化剂组合,得到了一个可调谐的通用体系,因为三联吡啶催化剂形成的过量自由基可被联吡啶催化剂转化为产物。随着芳基溴电子云密度增加,最佳比例向含有更多联吡啶镍催化剂的方向移动。最后,对各种流动池配置的研究表明,间歇循环比单程流动能实现更高产率(毫摩尔产物/时间/电极面积),高流速对于使电流最大化至关重要,并且两个并联的流动池可使反应时间几乎减半。所得到的反应已在克级规模上得到证明,并且应该可扩大到千克级规模。