Suppr超能文献

无锌、可扩展的还原型交叉亲电试剂偶联反应,由未分隔电池中的电化学驱动。

Zinc-Free, Scalable Reductive Cross-Electrophile Coupling Driven by Electrochemistry in an Undivided Cell.

作者信息

Franke Mareena C, Longley Victoria R, Rafiee Mohammad, Stahl Shannon S, Hansen Eric C, Weix Daniel J

机构信息

Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA.

Department of Chemistry, University of Missouri-Kansas City, Kansas City, MO 64110 USA.

出版信息

ACS Catal. 2022 Oct 21;12(20):12617-12626. doi: 10.1021/acscatal.2c03033. Epub 2022 Oct 3.

Abstract

Nickel-catalyzed reductive cross-electrophile coupling reactions are becoming increasingly important in organic synthesis, but application at scale is limited by three interconnected challenges: a reliance on amide solvents (complicated workup, regulated), the generation of stoichiometric Zn salts (complicated isolation, waste disposal issue), and mixing/activation challenges of zinc powder. We show here an electrochemical approach that addresses these three issues: the reaction works in acetonitrile with diisopropylethylamine as the terminal reductant in a simple undivided cell (graphite(+)/nickel foam(-)). The reaction utilizes a combination of two ligands, 4,4'-di--butyl-2,2'-bipyridine and 4,4',4''-tri--butyl-2,2':6',2''-terpyridine. Studies show that, alone, the bipyridine nickel catalyst predominantly forms protodehalogenated aryl and aryl dimer, whereas the terpyridine nickel catalyst predominantly forms bialkyl and product. By combining these two unselective catalysts, a tunable, general system results because excess radical formed by the terpyridine catalyst can be converted to product by the bipyridine catalyst. As the aryl bromide becomes more electron rich, the optimal ratio shifts to have more of the bipyridine nickel catalyst. Lastly, examination of a variety of flow-cell configurations establishes that batch recirculation can achieve higher productivity (mmol product/time/electrode area) than single-pass, that high flow rates are essential to maximizing current, and that two flow cells in parallel can nearly halve the reaction time. The resulting reaction is demonstrated on gram scale and should be scalable to kilogram scale.

摘要

镍催化的还原交叉亲电偶联反应在有机合成中变得越来越重要,但规模化应用受到三个相互关联的挑战的限制:依赖酰胺溶剂(后处理复杂、受管制)、化学计量的锌盐生成(分离复杂、存在废物处理问题)以及锌粉的混合/活化挑战。我们在此展示了一种电化学方法,可解决这三个问题:该反应在乙腈中以二异丙基乙胺作为终端还原剂,在简单的无隔膜电解池中(石墨(+)/泡沫镍(-))进行。该反应使用了两种配体的组合,即4,4'-二叔丁基-2,2'-联吡啶和4,4',4''-三叔丁基-2,2':6',2''-三联吡啶。研究表明,单独的联吡啶镍催化剂主要形成脱卤芳基和芳基二聚体,而三联吡啶镍催化剂主要形成双烷基产物。通过将这两种非选择性催化剂组合,得到了一个可调谐的通用体系,因为三联吡啶催化剂形成的过量自由基可被联吡啶催化剂转化为产物。随着芳基溴电子云密度增加,最佳比例向含有更多联吡啶镍催化剂的方向移动。最后,对各种流动池配置的研究表明,间歇循环比单程流动能实现更高产率(毫摩尔产物/时间/电极面积),高流速对于使电流最大化至关重要,并且两个并联的流动池可使反应时间几乎减半。所得到的反应已在克级规模上得到证明,并且应该可扩大到千克级规模。

相似文献

引用本文的文献

4
Borohydride Oxidation as Counter Reaction in Reductive Electrosynthesis.硼氢化物氧化作为还原电合成中的逆反应
Angew Chem Int Ed Engl. 2025 May 12;64(20):e202501653. doi: 10.1002/anie.202501653. Epub 2025 Apr 3.
6
The Future of Electro-organic Synthesis in Drug Discovery and Early Development.药物发现与早期开发中电有机合成的未来。
ACS Org Inorg Au. 2024 Nov 16;4(6):571-578. doi: 10.1021/acsorginorgau.4c00068. eCollection 2024 Dec 4.
7
Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis.交叉亲电偶联:合成中的原理、方法及应用
Chem Rev. 2024 Dec 11;124(23):13397-13569. doi: 10.1021/acs.chemrev.4c00524. Epub 2024 Nov 26.

本文引用的文献

1
The application of modern reactions in large-scale synthesis.现代反应在大规模合成中的应用。
Nat Rev Chem. 2021 Aug;5(8):546-563. doi: 10.1038/s41570-021-00288-z. Epub 2021 Jun 22.
3
Overcoming Limitations in Decarboxylative Arylation via Ag-Ni Electrocatalysis.通过 Ag-Ni 电催化克服脱羧芳基化的限制。
J Am Chem Soc. 2022 Sep 28;144(38):17709-17720. doi: 10.1021/jacs.2c08006. Epub 2022 Sep 15.
5
8
Modular terpene synthesis enabled by mild electrochemical couplings.温和电化学偶联实现模块化萜类合成。
Science. 2022 Feb 18;375(6582):745-752. doi: 10.1126/science.abn1395. Epub 2022 Feb 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验