Suppr超能文献

按需辅助控制康复机器人助行器的仿真研究。

Simulation study on assist-as-needed control of a rehabilitation robotic walker.

机构信息

Institute of Intelligent Manufacturing, Shenzhen Polytechnic, Shenzhen, Guangdong, China.

School of Mechanical and Electrical Engineering, Shenzhen Polytechnic, Shenzhen, Guangdong, China.

出版信息

Technol Health Care. 2023;31(S1):293-302. doi: 10.3233/THC-236025.

Abstract

BACKGROUND

Along with China entering an aging society, the percentage of people that over 60 will reach 34.9% in 2050, resulted in a significant increase in stroke patients.

OBJECTIVE

This paper proposes a rehabilitation robotic walker for walking assistance during the daily life, and a control method for the motor relearning during the gait training. The walker consists of an omni-directional mobile platform (OMP) which ensures the walker can move on the ground, a body weight support system (BWS) which is capable of providing the desired unloading force, and a pelvic assist mechanism (PAM) to provide the user with four degrees of freedom and avoid the rigid impact. The study goal is to gain a better understanding of the assist-as-needed control strategy during the gait training.

METHODS

For the man-machine interaction control, the assist-as-needed control strategy is adopted to guide the users' motions and improve the interaction experience. To build the force field in the three-dimensional space, the dynamics of the system is derived to increase the accuracy of force control.

RESULTS

The simulation results show that the force field around the motion trajectory was generated in the three-dimensional space. In order to understand the force field, we designed the simulation on sagittal plane and the controller can generate the appropriate force field. The preliminary experiment results were consistent with the simulation results.

CONCLUSION

Based on the mathematical simulation and the preliminary test, the results demonstrate that the proposed system can provide the guide force around the target trajectory, the accuracy of force control still remains to be improved.

摘要

背景

随着中国进入老龄化社会,2050 年 60 岁以上人口比例将达到 34.9%,导致中风患者显著增加。

目的

本文提出了一种康复机器人助行器,用于日常生活中的行走辅助,并提出了一种在步态训练中进行运动再学习的控制方法。助行器由一个全方位移动平台(OMP)组成,确保助行器可以在地面上移动,由一个体重支撑系统(BWS)组成,能够提供所需的卸载力,以及一个骨盆辅助机构(PAM),为用户提供四个自由度,并避免刚性冲击。本研究的目的是更好地了解步态训练中的按需辅助控制策略。

方法

对于人机交互控制,采用按需辅助控制策略来引导用户的运动,提高交互体验。为了在三维空间中生成力场,推导出系统的动力学方程,以提高力控制的精度。

结果

仿真结果表明,在三维空间中生成了运动轨迹周围的力场。为了理解力场,我们在矢状面设计了仿真,控制器可以生成适当的力场。初步实验结果与仿真结果一致。

结论

基于数学仿真和初步测试,结果表明,所提出的系统可以在目标轨迹周围提供导向力,力控制的精度仍有待提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11e5/10200137/6d51d5a5b193/thc-31-thc236025-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验