文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从助行器辅助步态中的上身力交互中提取用户的导航命令。

Extraction of user's navigation commands from upper body force interaction in walker assisted gait.

机构信息

Bioengineering Group, Consejo Superior de Investigaciones Cientificasi, Crta, Campo Real Km 0,200, Arganda del Rey - Madrid, Spain.

出版信息

Biomed Eng Online. 2010 Aug 5;9:37. doi: 10.1186/1475-925X-9-37.


DOI:10.1186/1475-925X-9-37
PMID:20687921
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC2924341/
Abstract

BACKGROUND: The advances in technology make possible the incorporation of sensors and actuators in rollators, building safer robots and extending the use of walkers to a more diverse population. This paper presents a new method for the extraction of navigation related components from upper-body force interaction data in walker assisted gait. A filtering architecture is designed to cancel: (i) the high-frequency noise caused by vibrations on the walker's structure due to irregularities on the terrain or walker's wheels and (ii) the cadence related force components caused by user's trunk oscillations during gait. As a result, a third component related to user's navigation commands is distinguished. RESULTS: For the cancelation of high-frequency noise, a Benedict-Bordner g-h filter was designed presenting very low values for Kinematic Tracking Error ((2.035 +/- 0.358).10(-2) kgf) and delay ((1.897 +/- 0.3697).10(1)ms). A Fourier Linear Combiner filtering architecture was implemented for the adaptive attenuation of about 80% of the cadence related components' energy from force data. This was done without compromising the information contained in the frequencies close to such notch filters. CONCLUSIONS: The presented methodology offers an effective cancelation of the undesired components from force data, allowing the system to extract in real-time voluntary user's navigation commands. Based on this real-time identification of voluntary user's commands, a classical approach to the control architecture of the robotic walker is being developed, in order to obtain stable and safe user assisted locomotion.

摘要

背景:技术的进步使得在助行器中集成传感器和执行器成为可能,从而制造出更安全的机器人,并将助步器的使用扩展到更多样化的人群。本文提出了一种从助行器辅助步态中上肢力相互作用数据中提取与导航相关成分的新方法。设计了一种滤波架构,以消除:(i)由于地形不规则或助行器车轮引起的助行器结构振动引起的高频噪声,以及(ii)用户在步态过程中躯干摆动引起的与步频相关的力分量。结果,区分出与用户导航命令相关的第三个分量。

结果:为了消除高频噪声,设计了一种 Benedict-Bordner g-h 滤波器,其运动跟踪误差((2.035 +/- 0.358).10(-2) kgf)和延迟((1.897 +/- 0.3697).10(1)ms)的值非常低。实现了傅里叶线性组合滤波架构,自适应衰减力数据中约 80%的与步频相关成分的能量。这是在不影响接近这些陷波滤波器的频率所包含信息的情况下完成的。

结论:所提出的方法提供了一种从力数据中有效消除不需要的成分的方法,允许系统实时提取用户自愿的导航命令。基于对用户自愿命令的实时识别,正在开发一种用于机器人助行器控制架构的经典方法,以获得稳定和安全的用户辅助运动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/72a8823c5676/1475-925X-9-37-11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/4d0310f7c725/1475-925X-9-37-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/a7094cc752ca/1475-925X-9-37-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/a7bdd4273b57/1475-925X-9-37-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/61fd9c8aeb7f/1475-925X-9-37-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/815f82d57d0d/1475-925X-9-37-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/222f7ce35a75/1475-925X-9-37-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/69b2235687ce/1475-925X-9-37-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/bdc47e7d6662/1475-925X-9-37-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/0f511d5fe019/1475-925X-9-37-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/46e7c94f2615/1475-925X-9-37-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/72a8823c5676/1475-925X-9-37-11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/4d0310f7c725/1475-925X-9-37-1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/a7094cc752ca/1475-925X-9-37-2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/a7bdd4273b57/1475-925X-9-37-3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/61fd9c8aeb7f/1475-925X-9-37-4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/815f82d57d0d/1475-925X-9-37-5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/222f7ce35a75/1475-925X-9-37-6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/69b2235687ce/1475-925X-9-37-7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/bdc47e7d6662/1475-925X-9-37-8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/0f511d5fe019/1475-925X-9-37-9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/46e7c94f2615/1475-925X-9-37-10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c1d/2924341/72a8823c5676/1475-925X-9-37-11.jpg

相似文献

[1]
Extraction of user's navigation commands from upper body force interaction in walker assisted gait.

Biomed Eng Online. 2010-8-5

[2]
Evaluating Gait Stability and Muscle Activation in Different Hand Holding Conditions Using the Robotic Walker-mTPAD.

Sensors (Basel). 2023-6-28

[3]
A New Controller for a Smart Walker Based on Human-Robot Formation.

Sensors (Basel). 2016-7-19

[4]
SLAM algorithm applied to robotics assistance for navigation in unknown environments.

J Neuroeng Rehabil. 2010-2-17

[5]
Treadmill motor current based real-time estimation of anteroposterior force during gait.

Annu Int Conf IEEE Eng Med Biol Soc. 2010

[6]
Automatic Assessment of a Rollator-User's Condition During Rehabilitation Using the i-Walker Platform.

IEEE Trans Neural Syst Rehabil Eng. 2017-4-25

[7]
Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness.

Sensors (Basel). 2021-5-7

[8]
A multi-camera and multimodal dataset for posture and gait analysis.

Sci Data. 2022-10-6

[9]
Passive derivation of basic walker-assisted gait characteristics from measured forces and moments.

Conf Proc IEEE Eng Med Biol Soc. 2004

[10]
Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists.

Sensors (Basel). 2021-5-19

引用本文的文献

[1]
Simulation study on assist-as-needed control of a rehabilitation robotic walker.

Technol Health Care. 2023

[2]
Assessment of a Robotic Walker in Older Adults With Parkinson's Disease in Daily Living Activities.

Front Neurorobot. 2021-12-14

[3]
Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists.

Sensors (Basel). 2021-5-19

[4]
Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness.

Sensors (Basel). 2021-5-7

[5]
Human-Robot-Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker.

Sensors (Basel). 2019-6-30

[6]
Robotics to enable older adults to remain living at home.

J Aging Res. 2012

本文引用的文献

[1]
Basic walker-assisted gait characteristics derived from forces and moments exerted on the walker's handles: results on normal subjects.

Med Eng Phys. 2007-4

[2]
Biomechanical analysis of rollator walking.

Biomed Eng Online. 2006-1-6

[3]
Ambulatory devices for chronic gait disorders in the elderly.

Am Fam Physician. 2003-4-15

[4]
Walker-assisted gait in rehabilitation: a study of biomechanics and instrumentation.

IEEE Trans Neural Syst Rehabil Eng. 2001-3

[5]
Biomechanical analysis of weight bearing force and muscle activation levels in the lower extremities during gait with a walker.

Acta Med Okayama. 2001-4

[6]
Adaptive canceling of physiological tremor for improved precision in microsurgery.

IEEE Trans Biomed Eng. 1998-7

[7]
Frequency spectrum analysis of wrist motion for activities of daily living.

J Orthop Res. 1989

[8]
Canes, crutches and walkers.

Am Fam Physician. 1991-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索