Suppr超能文献

展望 DNA 数据存储当前的挑战与机遇。

An outlook on the current challenges and opportunities in DNA data storage.

机构信息

Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, Greensboro, NC 27401, USA.

Department of Industrial & Systems Engineering, North Carolina Agricultural & Technical State University, Greensboro, NC 27411, USA; Center of Excellence in Product Design and Advanced Manufacturing (CEPDAM), North Carolina Agricultural & Technical State University, Greensboro, NC 27411, USA.

出版信息

Biotechnol Adv. 2023 Sep;66:108155. doi: 10.1016/j.biotechadv.2023.108155. Epub 2023 Apr 15.

Abstract

Silicon is the gold standard for information storage systems. The exponential generation of digital information will exhaust the global supply of refined silicon. Therefore, investing in alternative information storage materials such as DNA has gained momentum. DNA as a memory material possesses several advantages over silicon-based data storage, including higher storage capacity, data retention, and lower operational energy. Routine DNA data storage approaches encode data into chemically synthesized nucleotide sequences. The scalability of DNA data storage depends on factors such as the cost and the generation of hazardous waste during DNA synthesis, latency of writing and reading, and limited rewriting capacity. Here, we review the current status of DNA data storage encoding, writing, storing, retrieving and reading, and discuss the technology's challenges and opportunities.

摘要

硅是信息存储系统的黄金标准。数字信息的指数级增长将耗尽全球精制硅的供应。因此,投资于 DNA 等替代信息存储材料的势头越来越大。与基于硅的数据存储相比,DNA 作为存储材料具有几个优势,包括更高的存储容量、数据保持时间和更低的操作能量。常规的 DNA 数据存储方法将数据编码为化学合成的核苷酸序列。DNA 数据存储的可扩展性取决于 DNA 合成过程中的成本和危险废物的产生、写入和读取的延迟以及有限的重写能力等因素。在这里,我们回顾了 DNA 数据存储编码、写入、存储、检索和读取的现状,并讨论了该技术的挑战和机遇。

相似文献

1
An outlook on the current challenges and opportunities in DNA data storage.
Biotechnol Adv. 2023 Sep;66:108155. doi: 10.1016/j.biotechadv.2023.108155. Epub 2023 Apr 15.
2
DNA-DISK: Automated end-to-end data storage via enzymatic single-nucleotide DNA synthesis and sequencing on digital microfluidics.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2410164121. doi: 10.1073/pnas.2410164121. Epub 2024 Aug 15.
3
Data Storage Using DNA.
Adv Mater. 2024 Feb;36(6):e2307499. doi: 10.1002/adma.202307499. Epub 2023 Dec 2.
4
Robust direct digital-to-biological data storage in living cells.
Nat Chem Biol. 2021 Mar;17(3):246-253. doi: 10.1038/s41589-020-00711-4. Epub 2021 Jan 11.
5
Enzymes as green and sustainable tools for DNA data storage.
Chem Commun (Camb). 2025 Feb 11;61(14):2891-2905. doi: 10.1039/d4cc06351a.
7
Emerging Approaches to DNA Data Storage: Challenges and Prospects.
ACS Nano. 2022 Nov 22;16(11):17552-17571. doi: 10.1021/acsnano.2c06748. Epub 2022 Oct 18.
8
Encoding of non-biological information for its long-term storage in DNA.
Biosystems. 2022 Jun;215-216:104664. doi: 10.1016/j.biosystems.2022.104664. Epub 2022 Mar 14.
9
Efficient data reconstruction: The bottleneck of large-scale application of DNA storage.
Cell Rep. 2024 Apr 23;43(4):113699. doi: 10.1016/j.celrep.2024.113699. Epub 2024 Mar 21.
10
Bead-Based DNA Synthesis and Sequencing for Integrated Data Storage Using Digital Microfluidics.
Angew Chem Int Ed Engl. 2025 Jan 21;64(4):e202416004. doi: 10.1002/anie.202416004. Epub 2024 Dec 5.

引用本文的文献

1
Terminal deoxynucleotidyl transferase: Properties and applications.
Eng Microbiol. 2024 Nov 28;5(1):100179. doi: 10.1016/j.engmic.2024.100179. eCollection 2025 Mar.
2
Exploring potential biosafety implications in DNA information storage.
Biosaf Health. 2025 Mar 27;7(2):132-139. doi: 10.1016/j.bsheal.2025.03.006. eCollection 2025 Apr.
3
DNA storage: The future direction for medical cold data storage.
Synth Syst Biotechnol. 2025 Mar 14;10(2):677-695. doi: 10.1016/j.synbio.2025.03.006. eCollection 2025 Jun.
4
Towards next-generation DNA encryption via an expanded genetic system.
Natl Sci Rev. 2024 Dec 23;12(4):nwae469. doi: 10.1093/nsr/nwae469. eCollection 2025 Apr.
5
An exogenous encoding sequence based on DNA data storage technology and its application in assisted reproductive technology.
Biochem Biophys Rep. 2025 Feb 24;41:101962. doi: 10.1016/j.bbrep.2025.101962. eCollection 2025 Mar.
6
DNA-DISK: Automated end-to-end data storage via enzymatic single-nucleotide DNA synthesis and sequencing on digital microfluidics.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2410164121. doi: 10.1073/pnas.2410164121. Epub 2024 Aug 15.
7
Design and Construction of a Multi-Tiered Minimal Actin Cortex for Structural Support in Lipid Bilayer Applications.
ACS Appl Bio Mater. 2024 Mar 18;7(3):1936-1946. doi: 10.1021/acsabm.3c01267. Epub 2024 Mar 1.
8
"Cell Disk" DNA Storage System Capable of Random Reading and Rewriting.
Adv Sci (Weinh). 2024 Apr;11(15):e2305921. doi: 10.1002/advs.202305921. Epub 2024 Feb 8.

本文引用的文献

1
Dielectrophoretic bead-droplet reactor for solid-phase synthesis.
Nat Commun. 2024 Jul 22;15(1):6159. doi: 10.1038/s41467-024-49284-z.
2
Engineered Spore-Forming as a Microbial Vessel for Long-Term DNA Data Storage.
ACS Synth Biol. 2022 Nov 18;11(11):3583-3591. doi: 10.1021/acssynbio.2c00291. Epub 2022 Sep 23.
3
Robust data storage in DNA by de Bruijn graph-based de novo strand assembly.
Nat Commun. 2022 Sep 12;13(1):5361. doi: 10.1038/s41467-022-33046-w.
4
Adaptive coding for DNA storage with high storage density and low coverage.
NPJ Syst Biol Appl. 2022 Jul 4;8(1):23. doi: 10.1038/s41540-022-00233-w.
5
Rewritable two-dimensional DNA-based data storage with machine learning reconstruction.
Nat Commun. 2022 May 27;13(1):2984. doi: 10.1038/s41467-022-30140-x.
6
Scalable and automated CRISPR-based strain engineering using droplet microfluidics.
Microsyst Nanoeng. 2022 Mar 15;8:31. doi: 10.1038/s41378-022-00357-3. eCollection 2022.
7
Integrating DNA Encapsulates and Digital Microfluidics for Automated Data Storage in DNA.
Small. 2022 Apr;18(15):e2107381. doi: 10.1002/smll.202107381. Epub 2022 Feb 26.
9
Modular operation of microfluidic chips for highly parallelized cell culture and liquid dosing via a fluidic circuit board.
Microsyst Nanoeng. 2020 Nov 30;6:107. doi: 10.1038/s41378-020-00216-z. eCollection 2020.
10
MIC-Drop: A platform for large-scale in vivo CRISPR screens.
Science. 2021 Sep 3;373(6559):1146-1151. doi: 10.1126/science.abi8870. Epub 2021 Aug 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验