放射组学何去何从?放射组学十年历程的文献计量分析。

Quo vadis Radiomics? Bibliometric analysis of 10-year Radiomics journey.

机构信息

Division of Radiation Oncology, IEO European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141, Milan, Italy.

Department of Oncology and Hemato-Oncology, University of Milan, Via Festa del Perdono 7, 20122, Milan, Italy.

出版信息

Eur Radiol. 2023 Oct;33(10):6736-6745. doi: 10.1007/s00330-023-09645-6. Epub 2023 Apr 18.

Abstract

OBJECTIVES

Radiomics is the high-throughput extraction of mineable and-possibly-reproducible quantitative imaging features from medical imaging. The aim of this work is to perform an unbiased bibliometric analysis on Radiomics 10 years after the first work became available, to highlight its status, pitfalls, and growing interest.

METHODS

Scopus database was used to investigate all the available English manuscripts about Radiomics. R Bibliometrix package was used for data analysis: a cumulative analysis of document categories, authors affiliations, country scientific collaborations, institution collaboration networks, keyword analysis, comprehensive of co-occurrence network, thematic map analysis, and 2021 sub-analysis of trend topics was performed.

RESULTS

A total of 5623 articles and 16,833 authors from 908 different sources have been identified. The first available document was published in March 2012, while the most recent included was released on the 31st of December 2021. China and USA were the most productive countries. Co-occurrence network analysis identified five words clusters based on top 50 authors' keywords: Radiomics, computed tomography, radiogenomics, deep learning, tomography. Trend topics analysis for 2021 showed an increased interest in artificial intelligence (n = 286), nomogram (n = 166), hepatocellular carcinoma (n = 125), COVID-19 (n = 63), and X-ray computed (n = 60).

CONCLUSIONS

Our work demonstrates the importance of bibliometrics in aggregating information that otherwise would not be available in a granular analysis, detecting unknown patterns in Radiomics publications, while highlighting potential developments to ensure knowledge dissemination in the field and its future real-life applications in the clinical practice.

CLINICAL RELEVANCE STATEMENT

This work aims to shed light on the state of the art in radiomics, which offers numerous tangible and intangible benefits, and to encourage its integration in the contemporary clinical practice for more precise imaging analysis.

KEY POINTS

• ML-based bibliometric analysis is fundamental to detect unknown pattern of data in Radiomics publications. • A raising interest in the field, the most relevant collaborations, keywords co-occurrence network, and trending topics have been investigated. • Some pitfalls still exist, including the scarce standardization and the relative lack of homogeneity across studies.

摘要

目的

放射组学是从医学影像中提取可挖掘和可能可重复的定量成像特征的高通量方法。本研究的目的是在放射组学首次发表 10 年后进行无偏的文献计量学分析,以突出其现状、缺陷和日益增长的兴趣。

方法

使用 Scopus 数据库调查了所有关于放射组学的英文文献。使用 R Bibliometrix 包进行数据分析:对文献类别、作者机构、国家科学合作、机构合作网络、关键词分析、综合共现网络、主题图分析以及 2021 年趋势主题的子分析进行了累积分析。

结果

共确定了来自 908 个不同来源的 5623 篇文章和 16833 位作者。第一篇可用的文献发表于 2012 年 3 月,而最近的一篇文献发表于 2021 年 12 月 31 日。中国和美国是最具生产力的国家。共现网络分析根据前 50 位作者的关键词确定了五个词簇:放射组学、计算机断层扫描、放射基因组学、深度学习、断层扫描。对 2021 年的趋势主题分析表明,人工智能(n=286)、诺莫图(n=166)、肝细胞癌(n=125)、COVID-19(n=63)和 X 射线计算机(n=60)的兴趣增加。

结论

我们的工作表明,文献计量学在汇总否则无法在粒度分析中获得的信息方面具有重要意义,可用于检测放射组学文献中的未知模式,同时突出潜在的发展方向,以确保该领域的知识传播及其未来在临床实践中的实际应用。

临床相关性声明

这项工作旨在阐明放射组学的现状,该技术具有众多有形和无形的优势,并鼓励将其纳入当代临床实践,以进行更精确的成像分析。

要点

•基于 ML 的文献计量学分析对于检测放射组学文献中未知的数据模式至关重要。•调查了该领域的兴趣增加、最相关的合作、关键词共现网络和趋势主题。•仍存在一些缺陷,包括缺乏标准化和研究之间相对缺乏同质性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41ef/10511358/3f310a9eb1d2/330_2023_9645_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索