文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

全球放射组学研究的趋势与热点:一项文献计量分析

Trends and Hotspots in Global Radiomics Research: A Bibliometric Analysis.

作者信息

Zhang Minghui, Wang Yan, Lv Mutian, Sang Li, Wang Xuemei, Yu Zijun, Yang Ziyi, Wang Zhongqing, Sang Liang

机构信息

Department of Ultrasound, The First Hospital of China Medical University, Shenyang, P. R. China.

Department of Nuclear Medicine, The First Hospital of China Medical University, Shenyang, P. R. China.

出版信息

Technol Cancer Res Treat. 2024 Jan-Dec;23:15330338241235769. doi: 10.1177/15330338241235769.


DOI:10.1177/15330338241235769
PMID:38465611
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10929060/
Abstract

The purpose of this research is to summarize the structure of radiomics-based knowledge and to explore potential trends and priorities by using bibliometric analysis. Select radiomics-related publications from 2012 to October 2022 from the Science Core Collection Web site. Use VOSviewer (version 1.6.18), CiteSpace (version 6.1.3), Tableau (version 2022), Microsoft Excel and Rstudio's free online platforms (http://bibliometric.com) for co-writing, co-citing, and co-occurrence analysis of countries, institutions, authors, references, and keywords in the field. The visual analysis is also carried out on it. The study included 6428 articles. Since 2012, there has been an increase in research papers based on radiomics. Judging by publications, China has made the largest contribution in this area. We identify the most productive institutions and authors as Fudan University and Tianjie. The top three magazines with the most publications are《FRONTIERS IN ONCOLOGY》, 《EUROPEAN RADIOLOGY》, and 《CANCERS》. According to the results of reference and keyword analysis, "deep learning, nomogram, ultrasound, f-18-fdg, machine learning, covid-19, radiogenomics" has been determined as the main research direction in the future. Radiomics is in a phase of vigorous development with broad prospects. Cross-border cooperation between countries and institutions should be strengthened in the future. It can be predicted that the development of deep learning-based models and multimodal fusion models will be the focus of future research. This study explores the current state of research and hot spots in the field of radiomics from multiple perspectives, comprehensively, and objectively reflecting the evolving trends in imaging-related research and providing a reference for future research.

摘要

本研究的目的是总结基于放射组学的知识结构,并通过文献计量分析探索潜在趋势和优先事项。从科学核心合集网站上选取2012年至2022年10月与放射组学相关的出版物。使用VOSviewer(1.6.18版本)、CiteSpace(6.1.3版本)、Tableau(2022版本)、Microsoft Excel以及Rstudio的免费在线平台(http://bibliometric.com)对该领域的国家、机构、作者、参考文献和关键词进行合著、共被引和共现分析。并对其进行可视化分析。该研究共纳入6428篇文章。自2012年以来,基于放射组学的研究论文数量有所增加。从出版物来看,中国在这一领域的贡献最大。我们确定产出最多的机构和作者分别是复旦大学和天济。发表文章最多的前三本杂志是《肿瘤前沿》《欧洲放射学》和《癌症》。根据参考文献和关键词分析结果,“深度学习、列线图、超声、F-18-FDG、机器学习、COVID-19、放射基因组学”已被确定为未来的主要研究方向。放射组学正处于蓬勃发展阶段,前景广阔。未来应加强国家和机构之间的跨境合作。可以预测,基于深度学习的模型和多模态融合模型的发展将是未来研究的重点。本研究从多个角度全面、客观地探索了放射组学领域的研究现状和热点,反映了影像相关研究的发展趋势,为未来研究提供了参考。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229c/10929060/9f8d0283a2d7/10.1177_15330338241235769-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229c/10929060/e8e895154b17/10.1177_15330338241235769-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229c/10929060/c4f990d10b4f/10.1177_15330338241235769-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229c/10929060/38dce79171e1/10.1177_15330338241235769-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229c/10929060/5b400803eba9/10.1177_15330338241235769-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229c/10929060/fdad3e7366a2/10.1177_15330338241235769-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229c/10929060/9f8d0283a2d7/10.1177_15330338241235769-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229c/10929060/e8e895154b17/10.1177_15330338241235769-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229c/10929060/c4f990d10b4f/10.1177_15330338241235769-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229c/10929060/38dce79171e1/10.1177_15330338241235769-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229c/10929060/5b400803eba9/10.1177_15330338241235769-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229c/10929060/fdad3e7366a2/10.1177_15330338241235769-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/229c/10929060/9f8d0283a2d7/10.1177_15330338241235769-fig6.jpg

相似文献

[1]
Trends and Hotspots in Global Radiomics Research: A Bibliometric Analysis.

Technol Cancer Res Treat. 2024

[2]
Research status, hotspots and perspectives of artificial intelligence applied to pain management: a bibliometric and visual analysis.

Updates Surg. 2025-6-28

[3]
Knowledge graph and bibliometric analysis of inflammatory indicators in ovarian cancer.

Front Oncol. 2025-6-30

[4]
Comprehensive Global Analysis of Future Trends in Artificial Intelligence-Assisted Veterinary Medicine.

Vet Med Sci. 2025-5

[5]
Research Status and Direction of Chronic Obstructive Pulmonary Disease Complicated with Coronary Heart Disease: A Bibliometric Analysis from 2005 to 2024.

Int J Chron Obstruct Pulmon Dis. 2025-1-7

[6]
Knowledge mapping of ultrasound technology and triple-negative breast cancer: a visual and bibliometric analysis.

Discov Oncol. 2025-7-1

[7]
Global research landscape on artificial intelligence in echocardiography from 1997 to 2024: Bibliometric analysis.

Digit Health. 2025-6-30

[8]
Artificial intelligence in ophthalmology: a bibliometric analysis of the 5-year trends in literature.

Front Med (Lausanne). 2025-7-1

[9]
Data-driven trends in critical care informatics: a bibliometric analysis of global collaborations using the MIMIC database (2004-2024).

Comput Biol Med. 2025-9

[10]
123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma.

Cochrane Database Syst Rev. 2015-9-29

引用本文的文献

[1]
Machine Learning in Tuberculosis Research: A Global Bibliometric Analysis of Diagnostic, Prognostic, and Drug Discovery Trends.

Ther Innov Regul Sci. 2025-8-21

本文引用的文献

[1]
Trends and statistics of artificial intelligence and radiomics research in Radiology, Nuclear Medicine, and Medical Imaging: bibliometric analysis.

Eur Radiol. 2023-11

[2]
Quo vadis Radiomics? Bibliometric analysis of 10-year Radiomics journey.

Eur Radiol. 2023-10

[3]
Multi-task deep learning for medical image computing and analysis: A review.

Comput Biol Med. 2023-2

[4]
Radiomics for Discriminating Benign and Malignant Salivary Gland Tumors; Which Radiomic Feature Categories and MRI Sequences Should Be Used?

Cancers (Basel). 2022-11-25

[5]
Development of machine learning models integrating PET/CT radiomic and immunohistochemical pathomic features for treatment strategy choice of cervical cancer with negative pelvic lymph node by mediating COX-2 expression.

Front Physiol. 2022-10-14

[6]
Global research trends and foci of artificial intelligence-based tumor pathology: a scientometric study.

J Transl Med. 2022-9-6

[7]
Hotspots and frontiers in pulmonary arterial hypertension research: a bibliometric and visualization analysis from 2011 to 2020.

Bioengineered. 2022-6

[8]
Global Trends in Research of Gouty Arthritis Over Past Decade: A Bibliometric Analysis.

Front Immunol. 2022

[9]
A Bibliometric Analysis of Heart Failure with Preserved Ejection Fraction From 2000 to 2021.

Curr Probl Cardiol. 2022-9

[10]
Bibliometric Analysis on the Progress of Chronic Heart Failure.

Curr Probl Cardiol. 2022-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索