Suppr超能文献

一种用于子宫内膜癌预后分析的放射组学应用。

A radiogenomics application for prognostic profiling of endometrial cancer.

机构信息

Centre for Cancer Biomarkers, Department of Clinical Science, University of Bergen, Bergen, Norway.

Department of Obstetrics and Gynecology, Haukeland University Hospital, Bergen, Norway.

出版信息

Commun Biol. 2021 Dec 6;4(1):1363. doi: 10.1038/s42003-021-02894-5.

Abstract

Prognostication is critical for accurate diagnosis and tailored treatment in endometrial cancer (EC). We employed radiogenomics to integrate preoperative magnetic resonance imaging (MRI, n = 487 patients) with histologic-, transcriptomic- and molecular biomarkers (n = 550 patients) aiming to identify aggressive tumor features in a study including 866 EC patients. Whole-volume tumor radiomic profiling from manually (radiologists) segmented tumors (n = 138 patients) yielded clusters identifying patients with high-risk histological features and poor survival. Radiomic profiling by a fully automated machine learning (ML)-based tumor segmentation algorithm (n = 336 patients) reproduced the same radiomic prognostic groups. From these radiomic risk-groups, an 11-gene high-risk signature was defined, and its prognostic role was reproduced in orthologous validation cohorts (n = 554 patients) and aligned with The Cancer Genome Atlas (TCGA) molecular class with poor survival (copy-number-high/p53-altered). We conclude that MRI-based integrated radiogenomics profiling provides refined tumor characterization that may aid in prognostication and guide future treatment strategies in EC.

摘要

预测对于子宫内膜癌 (EC) 的准确诊断和个体化治疗至关重要。我们采用影像基因组学将术前磁共振成像 (MRI,n=487 例患者) 与组织学、转录组学和分子生物标志物 (n=550 例患者) 相结合,旨在通过包括 866 例 EC 患者的研究中识别侵袭性肿瘤特征。对手动(放射科医生)分割的肿瘤进行全容积肿瘤放射组学分析 (n=138 例患者) 产生的聚类可识别出具有高危组织学特征和不良生存的患者。基于完全自动化的机器学习 (ML) 肿瘤分割算法的放射组学分析 (n=336 例患者) 重现了相同的放射组学预后组。从这些放射组学风险组中定义了一个 11 基因高风险签名,并在同源验证队列 (n=554 例患者) 中重现了其预后作用,并与癌症基因组图谱 (TCGA) 分子分类(高拷贝数/ p53 改变)一致,提示不良预后。我们得出结论,基于 MRI 的综合影像基因组学分析可提供精细的肿瘤特征描述,有助于预测预后并指导 EC 的未来治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90dc/8648740/6d31bc9c8c3d/42003_2021_2894_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验