Suppr超能文献

用于多选项强制选择决策的漂移扩散模型。

Drift-diffusion models for multiple-alternative forced-choice decision making.

作者信息

Roxin Alex

机构信息

Centre de Recerca Matemàtica, Bellaterra, Spain.

Barcelona Graduate School of Mathematics, Barcelona, Spain.

出版信息

J Math Neurosci. 2019 Jul 3;9(1):5. doi: 10.1186/s13408-019-0073-4.

Abstract

The canonical computational model for the cognitive process underlying two-alternative forced-choice decision making is the so-called drift-diffusion model (DDM). In this model, a decision variable keeps track of the integrated difference in sensory evidence for two competing alternatives. Here I extend the notion of a drift-diffusion process to multiple alternatives. The competition between n alternatives takes place in a linear subspace of [Formula: see text] dimensions; that is, there are [Formula: see text] decision variables, which are coupled through correlated noise sources. I derive the multiple-alternative DDM starting from a system of coupled, linear firing rate equations. I also show that a Bayesian sequential probability ratio test for multiple alternatives is, in fact, equivalent to these same linear DDMs, but with time-varying thresholds. If the original neuronal system is nonlinear, one can once again derive a model describing a lower-dimensional diffusion process. The dynamics of the nonlinear DDM can be recast as the motion of a particle on a potential, the general form of which is given analytically for an arbitrary number of alternatives.

摘要

用于二选一强制选择决策背后认知过程的典型计算模型是所谓的漂移扩散模型(DDM)。在该模型中,一个决策变量跟踪两个竞争选项的感官证据的综合差异。在此,我将漂移扩散过程的概念扩展到多个选项。n个选项之间的竞争发生在[公式:见原文]维的线性子空间中;也就是说,有[公式:见原文]个决策变量,它们通过相关噪声源相互耦合。我从耦合的线性 firing rate 方程系统出发推导出多选项DDM。我还表明,针对多个选项的贝叶斯序贯概率比检验实际上等同于这些相同的线性DDM,但具有随时间变化的阈值。如果原始神经元系统是非线性的,人们可以再次推导出一个描述低维扩散过程的模型。非线性DDM的动力学可以重新表述为粒子在势场上的运动,其一般形式针对任意数量的选项进行了解析给出。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验