Suppr超能文献

ACO 同源物 4 的 S-亚硝基化提高了番茄中的乙烯合成和耐盐性。

S-nitrosylation of ACO homolog 4 improves ethylene synthesis and salt tolerance in tomato.

机构信息

State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China.

State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.

出版信息

New Phytol. 2023 Jul;239(1):159-173. doi: 10.1111/nph.18928. Epub 2023 Apr 19.

Abstract

Crop loss due to soil salinization is a global threat to agriculture. Nitric oxide (NO) and ethylene involve in multiple plant tolerance. However, their interaction in salt resistance remains largely elusive. We tested the mutual induction between NO and ethylene, and then identified an 1-aminocyclopropane-1-carboxylate oxidase homolog 4 (ACOh4) that influences ethylene synthesis and salt tolerance through NO-mediated S-nitrosylation. Both NO and ethylene positively responded to salt stress. Furthermore, NO participated in salt-induced ethylene production. Salt tolerance evaluation showed that function of NO was abolished by inhibiting ethylene production. Conversely, function of ethylene was little influenced by blocking NO generation. ACO was identified as the target of NO to control ethylene synthesis. In vitro and in vivo results suggested that ACOh4 was S-nitrosylated at Cys172, resulting in its enzymatic activation. Moreover, ACOh4 was induced by NO through transcriptional manner. Knockdown of ACOh4 abolished NO-induced ethylene production and salt tolerance. At physiological status, ACOh4 positively regulates the Na and H efflux, and keeps K /Na homeostasis by promoting salt-resistive genes' transcripts. Our findings validate a role of NO-ethylene module in salt tolerance and uncover a novel mechanism of how NO promoting ethylene synthesis against adversity.

摘要

由于土壤盐渍化导致的作物损失是全球农业面临的一个威胁。一氧化氮(NO)和乙烯参与了多种植物的耐受过程。然而,它们在耐盐性方面的相互作用在很大程度上仍未被揭示。我们测试了 NO 和乙烯之间的相互诱导作用,然后鉴定出一种 1-氨基环丙烷-1-羧酸氧化酶同源物 4(ACOh4),它通过 NO 介导的 S-亚硝基化影响乙烯合成和耐盐性。NO 和乙烯都对盐胁迫有积极响应。此外,NO 参与了盐诱导的乙烯产生。耐盐性评估表明,通过抑制乙烯产生可以消除 NO 的功能。相反,阻断 NO 的产生对乙烯的功能影响很小。ACO 被鉴定为 NO 控制乙烯合成的靶标。体外和体内结果表明,ACOh4 在 Cys172 处被 S-亚硝基化,导致其酶活性的激活。此外,NO 通过转录方式诱导 ACOh4。ACOh4 的敲低消除了 NO 诱导的乙烯产生和耐盐性。在生理状态下,ACOh4 通过促进耐盐性基因的转录,正向调节 Na 和 H 的外排,维持 K/Na 平衡。我们的研究结果验证了 NO-乙烯模块在耐盐性中的作用,并揭示了 NO 促进乙烯合成应对逆境的一种新机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验