Division of Human Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, California.
Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California.
Cancer Discov. 2024 Mar 1;14(3):508-523. doi: 10.1158/2159-8290.CD-23-0641.
Rapid proliferation is a hallmark of cancer associated with sensitivity to therapeutics that cause DNA replication stress (RS). Many tumors exhibit drug resistance, however, via molecular pathways that are incompletely understood. Here, we develop an ensemble of predictive models that elucidate how cancer mutations impact the response to common RS-inducing (RSi) agents. The models implement recent advances in deep learning to facilitate multidrug prediction and mechanistic interpretation. Initial studies in tumor cells identify 41 molecular assemblies that integrate alterations in hundreds of genes for accurate drug response prediction. These cover roles in transcription, repair, cell-cycle checkpoints, and growth signaling, of which 30 are shown by loss-of-function genetic screens to regulate drug sensitivity or replication restart. The model translates to cisplatin-treated cervical cancer patients, highlighting an RTK-JAK-STAT assembly governing resistance. This study defines a compendium of mechanisms by which mutations affect therapeutic responses, with implications for precision medicine.
Zhao and colleagues use recent advances in machine learning to study the effects of tumor mutations on the response to common therapeutics that cause RS. The resulting predictive models integrate numerous genetic alterations distributed across a constellation of molecular assemblies, facilitating a quantitative and interpretable assessment of drug response. This article is featured in Selected Articles from This Issue, p. 384.
快速增殖是癌症的一个标志,与导致 DNA 复制应激(RS)的治疗药物敏感性有关。然而,许多肿瘤通过分子途径表现出耐药性,这些途径尚未完全理解。在这里,我们开发了一组预测模型,阐明了癌症突变如何影响对常见 RS 诱导(RSi)药物的反应。这些模型采用深度学习的最新进展,以促进多药物预测和机制解释。在肿瘤细胞中的初步研究确定了 41 个分子组装,这些组装整合了数百个基因的改变,以进行准确的药物反应预测。这些改变涉及转录、修复、细胞周期检查点和生长信号传导,其中 30 个通过基因功能丧失遗传筛选显示出调节药物敏感性或复制重启动的作用。该模型转化为顺铂治疗的宫颈癌患者,突出了 RTK-JAK-STAT 组装对耐药性的调控作用。本研究定义了突变影响治疗反应的机制概要,对精准医学具有重要意义。
Zhao 及其同事利用机器学习的最新进展研究了肿瘤突变对常见导致 RS 的治疗药物反应的影响。由此产生的预测模型整合了分布在一系列分子组装中的许多遗传改变,便于对药物反应进行定量和可解释的评估。本文选自本期特色文章,第 384 页。