Suppr超能文献

基于树的风险因素识别和卒中队列研究中的卒中分级预测。

Tree-Based Risk Factor Identification and Stroke Level Prediction in Stroke Cohort Study.

机构信息

School of Mathematics and Statistics, Center for Data Science, Lanzhou University, Lanzhou, 730000, China.

Stroke Center, Lanzhou University Second Hospital, Lanzhou, 730030, China.

出版信息

Biomed Res Int. 2023 Apr 10;2023:7352191. doi: 10.1155/2023/7352191. eCollection 2023.

Abstract

. This study focuses on the identification of risk factors, classification of stroke level, and evaluation of the importance and interactions of various patient characteristics using cohort data from the Second Hospital of Lanzhou University. . Risk factors are identified by evaluation of the relationships between factors and response, as well as by ranking the importance of characteristics. Then, after discarding negligible factors, some well-known multicategorical classification algorithms are used to predict the level of stroke. In addition, using the Shapley additive explanation method (SHAP), factors with positive and negative effects are identified, and some important interactions for classifying the level of stroke are proposed. A waterfall plot for a specific patient is presented and used to determine the risk degree of that patient. . The results show that (1) the most important risk factors for stroke are hypertension, history of transient ischemia, and history of stroke; age and gender have a negligible impact. (2) The XGBoost model shows the best performance in predicting stroke risk; it also gives a ranking of risk factors based on their impact. (3) A combination of SHAP and XGBoost can be used to identify positive and negative factors and their interactions in stroke prediction, thereby providing helpful guidance for diagnosis.

摘要

. 本研究利用兰州大学第二医院的队列数据,聚焦于识别风险因素、对中风级别进行分类、评估各种患者特征的重要性和相互作用。通过评估因素与响应之间的关系以及对特征重要性的排序,确定风险因素。然后,在剔除可忽略因素之后,使用一些知名的多分类分类算法来预测中风级别。此外,利用 Shapley 加法解释方法 (SHAP) 识别具有正、负影响的因素,并提出一些用于分类中风级别的重要交互作用。为特定患者呈现 waterfall 图并用于确定该患者的风险程度。. 结果表明:(1)中风的最重要风险因素是高血压、短暂性脑缺血发作和中风史;年龄和性别影响可忽略不计。(2)XGBoost 模型在预测中风风险方面表现最佳;它还根据影响对风险因素进行了排序。(3)可以将 SHAP 和 XGBoost 相结合,用于识别中风预测中的正、负因素及其相互作用,从而为诊断提供有益的指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ed1/10110369/a3c8e03c5593/BMRI2023-7352191.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验