Yang Guangqian, Li Kaiwen, Yao Jinhan, Chang Shuimiao, He Chong, Lu Fang, Wang Xiaogang, Wang Zhao
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China.
Department of Cataract, Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030001, China.
Biomed Opt Express. 2023 Mar 2;14(4):1378-1392. doi: 10.1364/BOE.481419. eCollection 2023 Apr 1.
The early assessment of angle closure is of great significance for the timely diagnosis and treatment of primary angle-closure glaucoma (PACG). Anterior segment optical coherence tomography (AS-OCT) provides a fast and non-contact way to evaluate the angle close using the iris root (IR) and scleral spur (SS) information. The objective of this study was to develop a deep learning method to automatically detect IR and SS in AS-OCT for measuring anterior chamber (AC) angle parameters including angle opening distance (AOD), trabecular iris space area (TISA), trabecular iris angle (TIA), and anterior chamber angle (ACA). 3305 AS-OCT images from 362 eyes and 203 patients were collected and analyzed. Based on the recently proposed transformer-based architecture that learns to capture long-range dependencies by leveraging the self-attention mechanism, a hybrid convolutional neural network (CNN) and transformer model to encode both local and global features was developed to automatically detect IR and SS in AS-OCT images. Experiments demonstrated that our algorithm achieved a significantly better performance than state-of-the-art methods for AS-OCT and medical image analysis with a precision of 0.941, a sensitivity of 0.914, an F1 score of 0.927, and a mean absolute error (MAE) of 37.1±25.3 µm for IR, and a precision of 0.805, a sensitivity of 0.847, an F1 score of 0.826, and an MAE of 41.4±29.4 µm for SS, and a high agreement with expert human analysts for AC angle parameter measurement. We further demonstrated the application of the proposed method to evaluate the effect of cataract surgery with IOL implantation in a PACG patient and to assess the outcome of ICL implantation in a patient with high myopia with a potential risk of developing PACG. The proposed method can accurately detect IR and SS in AS-OCT images and effectively facilitate the AC angle parameter measurement for pre- and post-operative management of PACG.
原发性闭角型青光眼(PACG)的早期评估对于其及时诊断和治疗具有重要意义。眼前节光学相干断层扫描(AS-OCT)提供了一种快速且非接触的方式,利用虹膜根部(IR)和巩膜突(SS)信息来评估房角关闭情况。本研究的目的是开发一种深度学习方法,用于在AS-OCT中自动检测IR和SS,以测量包括房角开放距离(AOD)、小梁虹膜空间面积(TISA)、小梁虹膜角(TIA)和前房角(ACA)在内的前房角参数。收集并分析了来自203例患者362只眼的3305张AS-OCT图像。基于最近提出的基于Transformer架构,通过利用自注意力机制学习捕捉长程依赖关系,开发了一种混合卷积神经网络(CNN)和Transformer模型,用于编码局部和全局特征,以自动检测AS-OCT图像中的IR和SS。实验表明,我们的算法在AS-OCT和医学图像分析方面的性能明显优于现有方法,对于IR,其精度为0.941,灵敏度为0.914,F1分数为0.927,平均绝对误差(MAE)为37.1±25.3 µm;对于SS,精度为0.805,灵敏度为0.847,F1分数为0.826,MAE为41.4±29.4 µm,并且在房角参数测量方面与专业人类分析人员高度一致。我们进一步展示了所提出方法在评估PACG患者白内障超声乳化人工晶状体植入手术效果以及评估有发生PACG潜在风险的高度近视患者ICL植入结果方面的应用。所提出的方法能够准确检测AS-OCT图像中的IR和SS,并有效促进PACG术前和术后管理中的前房角参数测量。