Suppr超能文献

使用多分辨率编码器-解码器网络的三维牙根CT分割

Three Dimensional Root CT Segmentation using Multi-Resolution Encoder-Decoder Networks.

作者信息

Soltaninejad Mohammadreza, Sturrock Craig J, Griffiths Marcus, Pridmore Tony P, Pound Michael P

出版信息

IEEE Trans Image Process. 2020 May 12. doi: 10.1109/TIP.2020.2992893.

Abstract

We address the complex problem of reliably segmenting root structure from soil in X-ray Computed Tomography (CT) images. We utilise a deep learning approach, and propose a state-of-the-art multi-resolution architecture based on encoderdecoders. While previous work in encoder-decoders implies the use of multiple resolutions simply by downsampling and upsampling images, we make this process explicit, with branches of the network tasked separately with obtaining local high-resolution segmentation, and wider low-resolution contextual information. The complete network is a memory efficient implementation that is still able to resolve small root detail in large volumetric images. We compare against a number of different encoder-decoder based architectures from the literature, as well as a popular existing image analysis tool designed for root CT segmentation. We show qualitatively and quantitatively that a multi-resolution approach offers substantial accuracy improvements over a both a small receptive field size in a deep network, or a larger receptive field in a shallower network. We then further improve performance using an incremental learning approach, in which failures in the original network are used to generate harder negative training examples. Our proposed method requires no user interaction, is fully automatic, and identifies large and fine root material throughout the whole volume.

摘要

我们解决了在X射线计算机断层扫描(CT)图像中可靠地将根系结构与土壤分割开来的复杂问题。我们采用深度学习方法,并基于编码器-解码器提出了一种先进的多分辨率架构。虽然之前在编码器-解码器方面的工作只是通过对图像进行下采样和上采样来简单地使用多种分辨率,但我们使这个过程更加明确,网络的不同分支分别负责获取局部高分辨率分割结果以及更广泛的低分辨率上下文信息。完整的网络是一种内存高效的实现方式,仍然能够在大体积图像中分辨出细小的根系细节。我们与文献中一些基于编码器-解码器的不同架构以及一种现有的用于根系CT分割的流行图像分析工具进行了比较。我们通过定性和定量分析表明,多分辨率方法相对于深度网络中较小的感受野大小或较浅网络中较大的感受野,在精度上有显著提高。然后,我们使用增量学习方法进一步提高性能,其中原始网络中的失败情况被用于生成更具挑战性的负训练示例。我们提出的方法无需用户交互,是完全自动的,并且能够在整个体积中识别出粗大和细小的根系物质。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验