文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于图的深度学习在 COPD 多组学分类中的应用。

Deep learning on graphs for multi-omics classification of COPD.

机构信息

Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.

Biostatistics Shared Resource, University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.

出版信息

PLoS One. 2023 Apr 21;18(4):e0284563. doi: 10.1371/journal.pone.0284563. eCollection 2023.


DOI:10.1371/journal.pone.0284563
PMID:37083575
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10121008/
Abstract

Network approaches have successfully been used to help reveal complex mechanisms of diseases including Chronic Obstructive Pulmonary Disease (COPD). However despite recent advances, we remain limited in our ability to incorporate protein-protein interaction (PPI) network information with omics data for disease prediction. New deep learning methods including convolution Graph Neural Network (ConvGNN) has shown great potential for disease classification using transcriptomics data and known PPI networks from existing databases. In this study, we first reconstructed the COPD-associated PPI network through the AhGlasso (Augmented High-Dimensional Graphical Lasso Method) algorithm based on one independent transcriptomics dataset including COPD cases and controls. Then we extended the existing ConvGNN methods to successfully integrate COPD-associated PPI, proteomics, and transcriptomics data and developed a prediction model for COPD classification. This approach improves accuracy over several conventional classification methods and neural networks that do not incorporate network information. We also demonstrated that the updated COPD-associated network developed using AhGlasso further improves prediction accuracy. Although deep neural networks often achieve superior statistical power in classification compared to other methods, it can be very difficult to explain how the model, especially graph neural network(s), makes decisions on the given features and identifies the features that contribute the most to prediction generally and individually. To better explain how the spectral-based Graph Neural Network model(s) works, we applied one unified explainable machine learning method, SHapley Additive exPlanations (SHAP), and identified CXCL11, IL-2, CD48, KIR3DL2, TLR2, BMP10 and several other relevant COPD genes in subnetworks of the ConvGNN model for COPD prediction. Finally, Gene Ontology (GO) enrichment analysis identified glycosaminoglycan, heparin signaling, and carbohydrate derivative signaling pathways significantly enriched in the top important gene/proteins for COPD classifications.

摘要

网络方法已成功用于帮助揭示包括慢性阻塞性肺疾病(COPD)在内的复杂疾病机制。然而,尽管最近取得了进展,但我们在将蛋白质-蛋白质相互作用(PPI)网络信息与用于疾病预测的组学数据相结合的能力方面仍然受到限制。新的深度学习方法,包括卷积图神经网络(ConvGNN),已显示出使用转录组学数据和来自现有数据库的已知 PPI 网络对疾病进行分类的巨大潜力。在这项研究中,我们首先通过基于一个独立转录组学数据集(包括 COPD 病例和对照)的 AhGlasso(增强高维图形套索方法)算法重建 COPD 相关的 PPI 网络。然后,我们扩展了现有的 ConvGNN 方法,成功地整合了 COPD 相关的 PPI、蛋白质组学和转录组学数据,并开发了用于 COPD 分类的预测模型。与不整合网络信息的几种传统分类方法和神经网络相比,该方法提高了准确性。我们还证明,使用 AhGlasso 开发的更新的 COPD 相关网络进一步提高了预测准确性。尽管深度神经网络在分类方面通常比其他方法具有更高的统计能力,但要解释模型(特别是图神经网络)如何根据给定特征做出决策以及识别对一般和个别预测贡献最大的特征非常困难。为了更好地解释基于谱的图神经网络模型的工作原理,我们应用了一种统一的可解释机器学习方法 SHapley Additive exPlanations (SHAP),并在 COPD 预测的 ConvGNN 模型的子网络中确定了 CXCL11、IL-2、CD48、KIR3DL2、TLR2、BMP10 和其他几个相关的 COPD 基因。最后,基因本体论(GO)富集分析确定了在 COPD 分类的重要基因/蛋白中显著富集的糖胺聚糖、肝素信号和碳水化合物衍生物信号通路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/e637d6cadda8/pone.0284563.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/c87f3d2eb025/pone.0284563.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/9772c07fd6f7/pone.0284563.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/4271abb532aa/pone.0284563.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/9062ff911b04/pone.0284563.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/3509302b8f80/pone.0284563.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/711b991554c9/pone.0284563.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/af6ad10c5781/pone.0284563.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/e637d6cadda8/pone.0284563.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/c87f3d2eb025/pone.0284563.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/9772c07fd6f7/pone.0284563.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/4271abb532aa/pone.0284563.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/9062ff911b04/pone.0284563.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/3509302b8f80/pone.0284563.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/711b991554c9/pone.0284563.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/af6ad10c5781/pone.0284563.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f21/10121008/e637d6cadda8/pone.0284563.g008.jpg

相似文献

[1]
Deep learning on graphs for multi-omics classification of COPD.

PLoS One. 2023

[2]
An Augmented High-Dimensional Graphical Lasso Method to Incorporate Prior Biological Knowledge for Global Network Learning.

Front Genet. 2022-1-27

[3]
Explaining decisions of graph convolutional neural networks: patient-specific molecular subnetworks responsible for metastasis prediction in breast cancer.

Genome Med. 2021-3-11

[4]
Prior knowledge-guided multilevel graph neural network for tumor risk prediction and interpretation via multi-omics data integration.

Brief Bioinform. 2024-3-27

[5]
Local augmented graph neural network for multi-omics cancer prognosis prediction and analysis.

Methods. 2023-5

[6]
Graph Neural Networks With Multiple Prior Knowledge for Multi-Omics Data Analysis.

IEEE J Biomed Health Inform. 2023-9

[7]
Stable feature selection utilizing Graph Convolutional Neural Network and Layer-wise Relevance Propagation for biomarker discovery in breast cancer.

Artif Intell Med. 2024-5

[8]
A novel interactive deep cascade spectral graph convolutional network with multi-relational graphs for disease prediction.

Neural Netw. 2024-7

[9]
NNBGWO-BRCA marker: Neural Network and binary grey wolf optimization based Breast cancer biomarker discovery framework using multi-omics dataset.

Comput Methods Programs Biomed. 2024-9

[10]
A multimodal graph neural network framework for cancer molecular subtype classification.

BMC Bioinformatics. 2024-1-15

引用本文的文献

[1]
A technical review of multi-omics data integration methods: from classical statistical to deep generative approaches.

Brief Bioinform. 2025-7-2

[2]
Oxidative Stress and Inflammation in Hypoxemic Respiratory Diseases and Their Comorbidities: Molecular Insights and Diagnostic Advances in Chronic Obstructive Pulmonary Disease and Sleep Apnea.

Antioxidants (Basel). 2025-7-8

[3]
Common inflammatory proteins linking frailty and area-level deprivation as key drivers of cardiovascular risk in women.

Commun Med (Lond). 2025-7-20

[4]
A robust chronic obstructive pulmonary disease classification model using dragonfly optimized kernel extreme learning machine.

Sci Rep. 2025-5-28

[5]
Strategies to include prior knowledge in omics analysis with deep neural networks.

Patterns (N Y). 2025-3-14

[6]
Deep learning for detecting and early predicting chronic obstructive pulmonary disease from spirogram time series.

NPJ Syst Biol Appl. 2025-2-15

[7]
Applications of digital health technologies and artificial intelligence algorithms in COPD: systematic review.

BMC Med Inform Decis Mak. 2025-2-13

[8]
Advances on the Role of Lung Macrophages in the Pathogenesis of Chronic Obstructive Pulmonary Disease in the Era of Single-Cell Genomics.

Int J Med Sci. 2025-1-1

[9]
Comprehensive time-course gene expression evaluation of high-risk beef cattle to establish immunological characteristics associated with undifferentiated bovine respiratory disease.

Front Immunol. 2024

[10]
Exploring Molecular Mechanisms and Biomarkers in COPD: An Overview of Current Advancements and Perspectives.

Int J Mol Sci. 2024-7-4

本文引用的文献

[1]
Early detection of COPD based on graph convolutional network and small and weakly labeled data.

Med Biol Eng Comput. 2022-8

[2]
An Augmented High-Dimensional Graphical Lasso Method to Incorporate Prior Biological Knowledge for Global Network Learning.

Front Genet. 2022-1-27

[3]
Identifying miRNA-mRNA Networks Associated With COPD Phenotypes.

Front Genet. 2021-10-28

[4]
Multi-omics subtyping pipeline for chronic obstructive pulmonary disease.

PLoS One. 2021

[5]
Proteomics of extracellular vesicles in plasma reveals the characteristics and residual traces of COVID-19 patients without underlying diseases after 3 months of recovery.

Cell Death Dis. 2021-5-25

[6]
An Integrative Transcriptomic and Metabolomic Study Revealed That Melatonin Plays a Protective Role in Chronic Lung Inflammation by Reducing Necroptosis.

Front Immunol. 2021

[7]
PFP-WGAN: Protein function prediction by discovering Gene Ontology term correlations with generative adversarial networks.

PLoS One. 2021

[8]
Prediction of Obstructive Lung Disease from Chest Radiographs via Deep Learning Trained on Pulmonary Function Data.

Int J Chron Obstruct Pulmon Dis. 2020

[9]
The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets.

Nucleic Acids Res. 2021-1-8

[10]
Array programming with NumPy.

Nature. 2020-9-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索