Suppr超能文献

基于肺活量图时间序列的深度学习用于慢性阻塞性肺疾病的检测和早期预测。

Deep learning for detecting and early predicting chronic obstructive pulmonary disease from spirogram time series.

作者信息

Mei Shuhao, Li Xin, Zhou Yuxi, Xu Jiahao, Zhang Yong, Wan Yuxuan, Cao Shan, Zhao Qinghao, Geng Shijia, Xie Junqing, Chen Shengyong, Hong Shenda

机构信息

Department of Computer Science, Tianjin University of Technology, Tianjin, China.

National Institute of Health Data Science, Peking University, Beijing, China.

出版信息

NPJ Syst Biol Appl. 2025 Feb 15;11(1):18. doi: 10.1038/s41540-025-00489-y.

Abstract

Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung condition characterized by airflow obstruction. Current diagnostic methods primarily rely on identifying prominent features in spirometry (Volume-Flow time series) to detect COPD, but they are not adept at predicting future COPD risk based on subtle data patterns. In this study, we introduce a novel deep learning-based approach, DeepSpiro, aimed at the early prediction of future COPD risk. DeepSpiro consists of four key components: SpiroSmoother for stabilizing the Volume-Flow curve, SpiroEncoder for capturing volume variability-pattern through key patches of varying lengths, SpiroExplainer for integrating heterogeneous data and explaining predictions through volume attention, and SpiroPredictor for predicting the disease risk of undiagnosed high-risk patients based on key patch concavity, with prediction horizons of 1-5 years, or even longer. Evaluated on the UK Biobank dataset, DeepSpiro achieved an AUC of 0.8328 for COPD detection and demonstrated strong predictive performance for future COPD risk (p-value < 0.001). In summary, DeepSpiro can effectively predict the long-term progression of COPD disease.

摘要

慢性阻塞性肺疾病(COPD)是一种以气流受限为特征的慢性肺部疾病。目前的诊断方法主要依靠识别肺量计(容积-流量时间序列)中的显著特征来检测COPD,但它们并不擅长基于细微的数据模式预测未来患COPD的风险。在本研究中,我们引入了一种基于深度学习的新方法DeepSpiro,旨在早期预测未来患COPD的风险。DeepSpiro由四个关键组件组成:用于稳定容积-流量曲线的SpiroSmoother、用于通过不同长度的关键片段捕获容积变异性模式的SpiroEncoder、用于整合异构数据并通过容积注意力解释预测结果的SpiroExplainer,以及用于基于关键片段凹陷预测未诊断的高危患者疾病风险的SpiroPredictor,预测期为1至5年,甚至更长。在英国生物银行数据集上进行评估时,DeepSpiro在COPD检测方面的AUC为0.8328,并在预测未来患COPD的风险方面表现出强大的预测性能(p值<0.001)。总之,DeepSpiro可以有效地预测COPD疾病的长期进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e01b/11830002/cb3022d8f815/41540_2025_489_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验