Suppr超能文献

用于一氧化氮分析的集成生物芯片-电子系统与单原子纳米酶

Integrated Biochip-Electronic System with Single-Atom Nanozyme for Analysis of Nitric Oxide.

作者信息

Hu Fang Xin, Hu Guangxuan, Wang Dong Ping, Duan Xinxuan, Feng Linrun, Chen Bo, Liu Yuhang, Ding Jie, Guo Chunxian, Yang Hong Bin

机构信息

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China.

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.

出版信息

ACS Nano. 2023 May 9;17(9):8575-8585. doi: 10.1021/acsnano.3c00935. Epub 2023 Apr 21.

Abstract

Nitric oxide (NO) exhibits a crucial role in various versatile and distinct physiological functions. Hence, its real-time sensing is highly important. Herein, we developed an integrated nanoelectronic system comprising a cobalt single-atom nanozyme (Co-SAE) chip array sensor and an electronic signal processing module (IND) for both and multichannel qualifying of NO in normal and tumor-bearing mice. The high atomic utilization and catalytic activity of Co-SAE endowed an ultrawide linear range for NO varying from 36 to 4.1 × 10 nM with a low detection limit of 12 nM. Combining attenuated total reflectance surface enhanced infrared spectroscopy (ATR-SEIRAS) measurements and density function calculation revealed the activating mechanism of Co-SAE toward NO. The NO adsorption on an active Co atom forms *NO, followed by the reaction between *NO and OH, which could help design relevant nanozymes. Further, we investigated the NO-producing behaviors of various organs of both normal and tumor-bearing mice using the proposed device. We also evaluated the NO yield produced by the wounded mouse using the designed device and found it to be approximately 15 times that of the normal mouse. This study bridges the technical gap between a biosensor and an integrated system for molecular analysis and . The as-fabricated integrated wireless nanoelectronic system with multiple test channels significantly improved the detection efficiency, which can be widely used in designing other portable sensing devices with multiplexed analysis capability.

摘要

一氧化氮(NO)在多种不同的生理功能中发挥着关键作用。因此,对其进行实时传感至关重要。在此,我们开发了一种集成纳米电子系统,该系统由钴单原子纳米酶(Co-SAE)芯片阵列传感器和电子信号处理模块(IND)组成,用于对正常小鼠和荷瘤小鼠体内的NO进行单通道和多通道定量分析。Co-SAE的高原子利用率和催化活性为NO提供了超宽的线性范围,从36到4.1×10 nM,检测限低至12 nM。结合衰减全反射表面增强红外光谱(ATR-SEIRAS)测量和密度泛函计算揭示了Co-SAE对NO的激活机制。NO在活性Co原子上吸附形成NO,随后NO与OH发生反应,这有助于设计相关的纳米酶。此外,我们使用所提出的装置研究了正常小鼠和荷瘤小鼠各种器官产生NO的行为。我们还使用设计的装置评估了受伤小鼠产生的NO产量,发现其约为正常小鼠的15倍。这项研究弥合了生物传感器与用于分子分析的集成系统之间的技术差距。所制造的具有多个测试通道的集成无线纳米电子系统显著提高了检测效率,可广泛用于设计其他具有多重分析能力的便携式传感装置。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验