Suppr超能文献

基于物理信息的深度学习在弹性力学中的应用:正问题、反问题及混合问题。

Physics-Informed Deep-Learning For Elasticity: Forward, Inverse, and Mixed Problems.

机构信息

Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.

Department of Mechanical Engineering, University of California, Berkeley, CA, 94720, USA.

出版信息

Adv Sci (Weinh). 2023 Jun;10(18):e2300439. doi: 10.1002/advs.202300439. Epub 2023 Apr 24.

Abstract

Elastography is a medical imaging technique used to measure the elasticity of tissues by comparing ultrasound signals before and after a light compression. The lateral resolution of ultrasound is much inferior to the axial resolution. Current elastography methods generally require both axial and lateral displacement components, making them less effective for clinical applications. Additionally, these methods often rely on the assumption of material incompressibility, which can lead to inaccurate elasticity reconstruction as no materials are truly incompressible. To address these challenges, a new physics-informed deep-learning method for elastography is proposed. This new method integrates a displacement network and an elasticity network to reconstruct the Young's modulus field of a heterogeneous object based on only a measured axial displacement field. It also allows for the removal of the assumption of material incompressibility, enabling the reconstruction of both Young's modulus and Poisson's ratio fields simultaneously. The authors demonstrate that using multiple measurements can mitigate the potential error introduced by the "eggshell" effect, in which the presence of stiff material prevents the generation of strain in soft material. These improvements make this new method a valuable tool for a wide range of applications in medical imaging, materials characterization, and beyond.

摘要

弹性成像是一种医学成像技术,通过比较轻压前后的超声信号来测量组织的弹性。超声的横向分辨率远低于轴向分辨率。目前的弹性成像方法通常需要轴向和横向位移分量,这使得它们在临床应用中效果较差。此外,这些方法通常依赖于材料不可压缩性的假设,这可能导致弹性重建不准确,因为没有材料是真正不可压缩的。为了解决这些挑战,提出了一种新的基于物理信息的深度学习弹性成像方法。该方法将位移网络和弹性网络集成在一起,仅基于测量的轴向位移场重建异质物体的杨氏模量场。它还允许去除材料不可压缩性的假设,能够同时重建杨氏模量和泊松比场。作者证明,使用多次测量可以减轻“蛋壳”效应带来的潜在误差,在“蛋壳”效应中,硬材料的存在阻止了软材料产生应变。这些改进使得这种新方法成为医学成像、材料特性表征等领域的广泛应用中的有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4591/10288249/0e101d3fd334/ADVS-10-2300439-g004.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验