Sate Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China.
Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
Nat Commun. 2023 Apr 24;14(1):2339. doi: 10.1038/s41467-023-37875-1.
Differential diagnosis of pulmonary nodules detected by computed tomography (CT) remains a challenge in clinical practice. Here, we characterize the global metabolomes of 480 serum samples including healthy controls, benign pulmonary nodules, and stage I lung adenocarcinoma. The adenocarcinoma demonstrates a distinct metabolomic signature, whereas benign nodules and healthy controls share major similarities in metabolomic profiles. A panel of 27 metabolites is identified in the discovery cohort (n = 306) to distinguish between benign and malignant nodules. The discriminant model achieves an AUC of 0.915 and 0.945 in the internal validation (n = 104) and external validation cohort (n = 111), respectively. Pathway analysis reveals elevation in glycolytic metabolites associated with decreased tryptophan in serum of lung adenocarcinoma vs benign nodules and healthy controls, and demonstrates that uptake of tryptophan promotes glycolysis in lung cancer cells. Our study highlights the value of the serum metabolite biomarkers in risk assessment of pulmonary nodules detected by CT screening.
计算机断层扫描(CT)检测到的肺部结节的鉴别诊断在临床实践中仍然是一个挑战。在这里,我们对包括健康对照、良性肺结节和 I 期肺腺癌在内的 480 个血清样本的全球代谢组进行了特征描述。腺癌表现出明显的代谢组学特征,而良性结节和健康对照在代谢组学特征上具有主要相似性。在发现队列(n=306)中确定了一组 27 种代谢物,以区分良性和恶性结节。在内部验证(n=104)和外部验证队列(n=111)中,该判别模型的 AUC 分别为 0.915 和 0.945。途径分析显示,与良性结节和健康对照组相比,肺腺癌血清中的糖酵解代谢物升高,色氨酸降低,并且表明色氨酸的摄取促进了肺癌细胞的糖酵解。我们的研究强调了 CT 筛查检测到的肺部结节的血清代谢物生物标志物在风险评估中的价值。