Suppr超能文献

TAS2R14的预测结构和细胞信号揭示了其检测多种苦味的受体高度灵活性。

Predicted structure and cell signaling of TAS2R14 reveal receptor hyper-flexibility for detecting diverse bitter tastes.

作者信息

Tokmakova Alina, Kim Donghwa, Guthrie Brian, Kim Soo-Kyung, Goddard William A, Liggett Stephen B

机构信息

Materials and Process Simulation Center, California Institute of Technology, Pasadena, CA 91125, USA.

Department of Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA.

出版信息

iScience. 2023 Mar 16;26(4):106422. doi: 10.1016/j.isci.2023.106422. eCollection 2023 Apr 21.

Abstract

The 25 human bitter taste receptors (TAS2Rs) are expressed on taste and extra-oral cells representing an integrated chemosensory system. The archetypal TAS2R14 is activated by > 150 topographically diverse agonists, raising the question of how this uncharacteristic accommodation is achieved for these GPCRs. We report the computationally derived structure of TAS2R14 with binding sites and energies for five highly diverse agonists. Remarkably, the binding pocket is the same for all five agonists. The energies derived from molecular dynamics are consistent with experiments determining signal transduction coefficients in live cells. TAS2R14 accommodates agonists through the breaking of a TMD3 H-bond instead of the prototypic strong salt bridge, a TMD1,2,7 interaction different from Class A GPCRs, and agonist-promoted TMD3 salt bridges for high affinity (which we confirmed by receptor mutagenesis). Thus, the broadly tuned TAS2Rs accommodate diverse agonists via a single (vs multiple) binding pocket through unique TM interactions for sensing disparate micro-environments.

摘要

25种人类苦味受体(TAS2Rs)在味觉细胞和口外细胞上表达,构成一个整合的化学感应系统。典型的TAS2R14可被150多种拓扑结构各异的激动剂激活,这就提出了一个问题:这些G蛋白偶联受体(GPCRs)是如何实现这种非典型适应性的。我们报告了通过计算得出的TAS2R14的结构,以及五种高度不同的激动剂的结合位点和能量。值得注意的是,所有五种激动剂的结合口袋都是相同的。从分子动力学得出的能量与在活细胞中测定信号转导系数的实验结果一致。TAS2R14通过打破跨膜结构域3(TMD3)的氢键来容纳激动剂,而不是典型的强盐桥,其跨膜结构域1、2、7的相互作用不同于A类GPCRs,并且激动剂促进形成高亲和力的TMD3盐桥(我们通过受体诱变证实了这一点)。因此,广泛调谐的TAS2Rs通过独特的跨膜相互作用,经由单个(而非多个)结合口袋来容纳多种激动剂,以感知不同的微环境。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1ad1/10121769/58e1508463bb/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验