Suppr超能文献

甲状腺切除术后结局的人工神经网络预测。

Artificial neural network prediction of post-thyroidectomy outcome.

机构信息

Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, California, USA.

出版信息

Clin Otolaryngol. 2023 Jul;48(4):665-671. doi: 10.1111/coa.14066. Epub 2023 Apr 25.

Abstract

OBJECTIVES

The goal of this study was to develop a deep neural network (DNN) for predicting surgical/medical complications and unplanned reoperations following thyroidectomy.

DESIGN, SETTING, AND PARTICIPANTS: The 2005-2017 American College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) database was queried to extract patients who underwent thyroidectomy. A DNN consisting of 10 layers was developed with an 80:20 breakdown for training and testing.

MAIN OUTCOME MEASURES

Three primary outcomes of interest, including occurrence of surgical complications, medical complications, and unplanned reoperation were predicted.

RESULTS

Of the 21 550 patients who underwent thyroidectomy, medical complications, surgical complications and reoperation occurred in 1723 (8.0%), 943 (4.38%) and 2448 (11.36%) patients, respectively. The DNN performed with an area under the curve of receiver operating characteristics of .783 (medical complications), .709 (surgical complications) and .703 (reoperations). Accuracy, specificity and negative predictive values of the model for all outcome variables ranged 78.2%-97.2%, while sensitivity and positive predictive values ranged 11.6%-62.5%. Variables with high permutation importance included sex, inpatient versus outpatient and American Society of Anesthesiologists class.

CONCLUSIONS

We predicted surgical/medical complications and unplanned reoperation following thyroidectomy via development of a well-performing ML algorithm. We have also developed a web-based application available on mobile devices to demonstrate the predictive capacity of our models in real time.

摘要

目的

本研究旨在开发一种深度神经网络(DNN),以预测甲状腺切除术后的手术/医疗并发症和计划外再次手术。

设计、地点和参与者:查询了 2005-2017 年美国外科医师学会国家外科质量改进计划(ACS-NSQIP)数据库,以提取接受甲状腺切除术的患者。开发了一个由 10 层组成的 DNN,其训练和测试的比例为 80:20。

主要观察结果

预测了三个主要感兴趣的结果,包括手术并发症、医疗并发症和计划外再次手术的发生。

结果

在接受甲状腺切除术的 21550 名患者中,分别有 1723 名(8.0%)、943 名(4.38%)和 2448 名(11.36%)患者发生了医疗并发症、手术并发症和再次手术。DNN 的曲线下面积为接受者操作特征.783(医疗并发症)、.709(手术并发症)和.703(再次手术)。该模型对所有结局变量的准确性、特异性和阴性预测值的范围为 78.2%-97.2%,而敏感性和阳性预测值的范围为 11.6%-62.5%。具有高排列重要性的变量包括性别、住院患者与门诊患者以及美国麻醉师学会分类。

结论

我们通过开发性能良好的机器学习算法预测了甲状腺切除术后的手术/医疗并发症和计划外再次手术。我们还开发了一个基于网络的应用程序,可在移动设备上使用,以实时演示我们模型的预测能力。

相似文献

1
Artificial neural network prediction of post-thyroidectomy outcome.
Clin Otolaryngol. 2023 Jul;48(4):665-671. doi: 10.1111/coa.14066. Epub 2023 Apr 25.
3
Assessing the utility of deep neural networks in predicting postoperative surgical complications: a retrospective study.
Lancet Digit Health. 2021 Aug;3(8):e471-e485. doi: 10.1016/S2589-7500(21)00084-4. Epub 2021 Jun 29.
5
Evaluating Discrimination of ACS-NSQIP Surgical Risk Calculator in Thyroidectomy Patients.
J Surg Res. 2022 Mar;271:137-144. doi: 10.1016/j.jss.2021.10.016. Epub 2021 Dec 10.
8
Can the American College of Surgeons Risk Calculator Predict 30-day Complications After Spine Surgery?
Spine (Phila Pa 1976). 2020 May 1;45(9):621-628. doi: 10.1097/BRS.0000000000003340.
9
Machine-learning Models Predict 30-Day Mortality, Cardiovascular Complications, and Respiratory Complications After Aseptic Revision Total Joint Arthroplasty.
Clin Orthop Relat Res. 2022 Nov 1;480(11):2137-2145. doi: 10.1097/CORR.0000000000002276. Epub 2022 Jun 20.

本文引用的文献

1
The Use of Artificial Neural Network to Predict Surgical Outcomes After Inguinal Hernia Repair.
J Surg Res. 2021 Mar;259:372-378. doi: 10.1016/j.jss.2020.09.021. Epub 2020 Oct 21.
2
Outcomes of parathyroid gland identification and autotransplantation during total thyroidectomy.
Eur Arch Otorhinolaryngol. 2020 Aug;277(8):2319-2324. doi: 10.1007/s00405-020-05941-9. Epub 2020 Mar 30.
3
Automated acquisition of explainable knowledge from unannotated histopathology images.
Nat Commun. 2019 Dec 18;10(1):5642. doi: 10.1038/s41467-019-13647-8.
4
Reconstructive trends and complications following parotidectomy: incidence and predictors in 11,057 cases.
J Otolaryngol Head Neck Surg. 2019 Nov 19;48(1):64. doi: 10.1186/s40463-019-0387-y.
5
A Novel Machine Learning Model Developed to Assist in Patient Selection for Outpatient Total Shoulder Arthroplasty.
J Am Acad Orthop Surg. 2020 Jul 1;28(13):e580-e585. doi: 10.5435/JAAOS-D-19-00395.
6
Use of Machine Learning for Prediction of Patient Risk of Postoperative Complications After Liver, Pancreatic, and Colorectal Surgery.
J Gastrointest Surg. 2020 Aug;24(8):1843-1851. doi: 10.1007/s11605-019-04338-2. Epub 2019 Aug 5.
10
Patient-Reported Dysphagia After Thyroidectomy: A Qualitative Study.
JAMA Otolaryngol Head Neck Surg. 2018 Apr 1;144(4):342-348. doi: 10.1001/jamaoto.2017.3378.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验