Suppr超能文献

通过改善大肠杆菌中钴胺素的摄取来增强B类自由基S-腺苷甲硫氨酸甲基转移酶的溶解性

Enhanced Solubilization of Class B Radical S-Adenosylmethionine Methylases by Improved Cobalamin Uptake in Escherichia coli.

作者信息

Lanz Nicholas D, Blaszczyk Anthony J, McCarthy Erin L, Wang Bo, Wang Roy X, Jones Brianne S, Booker Squire J

出版信息

Biochemistry. 2018 Mar 6;57(9):1475-1490. doi: 10.1021/acs.biochem.7b01205. Epub 2018 Feb 19.

Abstract

The methylation of unactivated carbon and phosphorus centers is a burgeoning area of biological chemistry, especially given that such reactions constitute key steps in the biosynthesis of numerous enzyme cofactors, antibiotics, and other natural products of clinical value. These kinetically challenging reactions are catalyzed exclusively by enzymes in the radical S-adenosylmethionine (SAM) superfamily and have been grouped into four classes (A-D). Class B radical SAM (RS) methylases require a cobalamin cofactor in addition to the [4Fe-4S] cluster that is characteristic of RS enzymes. However, their poor solubility upon overexpression and their generally poor turnover has hampered detailed in vitro studies of these enzymes. It has been suggested that improper folding, possibly caused by insufficient cobalamin during their overproduction in Escherichia coli, leads to formation of inclusion bodies. Herein, we report our efforts to improve the overproduction of class B RS methylases in a soluble form by engineering a strain of E. coli to take in more cobalamin. We cloned five genes ( btuC, btuE, btuD, btuF, and btuB) that encode proteins that are responsible for cobalamin uptake and transport in E. coli and co-expressed these genes with those that encode TsrM, Fom3, PhpK, and ThnK, four class B RS methylases that suffer from poor solubility during overproduction. This strategy markedly enhances the uptake of cobalamin into the cytoplasm and improves the solubility of the target enzymes significantly.

摘要

未活化的碳中心和磷中心的甲基化是生物化学中一个新兴的领域,特别是考虑到此类反应是众多酶辅因子、抗生素及其他具有临床价值的天然产物生物合成中的关键步骤。这些动力学上具有挑战性的反应仅由自由基S-腺苷甲硫氨酸(SAM)超家族中的酶催化,并已被分为四类(A - D)。B类自由基SAM(RS)甲基化酶除了具有RS酶特有的[4Fe - 4S]簇外,还需要钴胺素辅因子。然而,它们在过表达时溶解性差,且周转率普遍较低,这阻碍了对这些酶进行详细的体外研究。有人提出,在大肠杆菌中过量生产期间,钴胺素不足可能导致折叠不当,从而形成包涵体。在此,我们报告了通过改造大肠杆菌菌株以摄取更多钴胺素,来提高B类RS甲基化酶可溶性形式过量生产的努力。我们克隆了五个基因(btuC、btuE、btuD、btuF和btuB),它们编码负责大肠杆菌中钴胺素摄取和运输的蛋白质,并将这些基因与编码TsrM、Fom3、PhpK和ThnK的基因共表达,这四种B类RS甲基化酶在过量生产时溶解性较差。这种策略显著增强了钴胺素向细胞质的摄取,并显著提高了目标酶的溶解性。

相似文献

1
Enhanced Solubilization of Class B Radical S-Adenosylmethionine Methylases by Improved Cobalamin Uptake in Escherichia coli.
Biochemistry. 2018 Mar 6;57(9):1475-1490. doi: 10.1021/acs.biochem.7b01205. Epub 2018 Feb 19.
2
TsrM as a Model for Purifying and Characterizing Cobalamin-Dependent Radical S-Adenosylmethionine Methylases.
Methods Enzymol. 2017;595:303-329. doi: 10.1016/bs.mie.2017.07.007. Epub 2017 Aug 21.
3
Structural characterization of cobalamin-dependent radical S-adenosylmethionine methylases.
Methods Enzymol. 2022;669:3-27. doi: 10.1016/bs.mie.2021.12.013. Epub 2022 Jan 28.
5
Radical-mediated enzymatic methylation: a tale of two SAMS.
Acc Chem Res. 2012 Apr 17;45(4):555-64. doi: 10.1021/ar200202c. Epub 2011 Nov 18.
6
Understanding the role of electron donors in the reaction catalyzed by Tsrm, a cobalamin-dependent radical S-adenosylmethionine methylase.
J Biol Inorg Chem. 2019 Sep;24(6):831-839. doi: 10.1007/s00775-019-01689-8. Epub 2019 Jul 26.
7
Surprise! A hidden B cofactor catalyzes a radical methylation.
J Biol Chem. 2019 Aug 2;294(31):11726-11727. doi: 10.1074/jbc.H119.009976.

引用本文的文献

1
Biosynthesis of Biphenomycin-like Macrocyclic Peptides by Formation and Cross-Linking of -Tyrosines.
J Am Chem Soc. 2025 Jul 9;147(27):23781-23796. doi: 10.1021/jacs.5c06044. Epub 2025 Jun 26.
2
Radical Fluoromethylation Enabled by Cobalamin-Dependent Radical SAM Enzymes.
ACS Bio Med Chem Au. 2025 May 6;5(3):464-474. doi: 10.1021/acsbiomedchemau.5c00062. eCollection 2025 Jun 18.
4
Biosynthesis of Macrocyclic Peptides by Formation and Crosslinking of -Tyrosines.
bioRxiv. 2025 Apr 8:2025.04.04.647296. doi: 10.1101/2025.04.04.647296.
7
Deciphering reductive dehalogenase specificity through targeted mutagenesis of chloroalkane reductases.
Appl Environ Microbiol. 2025 Mar 19;91(3):e0150124. doi: 10.1128/aem.01501-24. Epub 2025 Feb 13.
9
Structural Evidence for DUF512 as a Radical -Adenosylmethionine Cobalamin-Binding Domain.
ACS Bio Med Chem Au. 2024 Oct 23;4(6):319-330. doi: 10.1021/acsbiomedchemau.4c00067. eCollection 2024 Dec 18.
10
MecE, MecB, and MecC proteins orchestrate methyl group transfer during dichloromethane fermentation.
Appl Environ Microbiol. 2024 Oct 23;90(10):e0097824. doi: 10.1128/aem.00978-24. Epub 2024 Sep 25.

本文引用的文献

2
TsrM as a Model for Purifying and Characterizing Cobalamin-Dependent Radical S-Adenosylmethionine Methylases.
Methods Enzymol. 2017;595:303-329. doi: 10.1016/bs.mie.2017.07.007. Epub 2017 Aug 21.
5
A B-dependent radical SAM enzyme involved in oxetanocin A biosynthesis.
Nature. 2017 Apr 20;544(7650):322-326. doi: 10.1038/nature21689. Epub 2017 Mar 27.
6
Vitamin B in the spotlight again.
Curr Opin Chem Biol. 2017 Apr;37:63-70. doi: 10.1016/j.cbpa.2017.01.013. Epub 2017 Feb 3.
7
The Catalytic Mechanism of the Class C Radical S-Adenosylmethionine Methyltransferase NosN.
Angew Chem Int Ed Engl. 2017 Mar 27;56(14):3857-3861. doi: 10.1002/anie.201609948. Epub 2017 Jan 23.
8
Biosynthesis of Branched Alkoxy Groups: Iterative Methyl Group Alkylation by a Cobalamin-Dependent Radical SAM Enzyme.
J Am Chem Soc. 2017 Feb 8;139(5):1742-1745. doi: 10.1021/jacs.6b10901. Epub 2017 Jan 25.
9
The B-Radical SAM Enzyme PoyC Catalyzes Valine C-Methylation during Polytheonamide Biosynthesis.
J Am Chem Soc. 2016 Dec 7;138(48):15515-15518. doi: 10.1021/jacs.6b06697. Epub 2016 Nov 29.
10
Radical new paradigm for heme degradation in Escherichia coli O157:H7.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12138-12143. doi: 10.1073/pnas.1603209113. Epub 2016 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验