Division of Hospital Medicine.
James M. Anderson Center for Health Systems Excellence, Cincinnati Children's Hospital, Cincinnati, Ohio.
Pediatrics. 2023 May 1;151(5). doi: 10.1542/peds.2022-059872.
Individual children's hospitals care for a small number of patients with multisystem inflammatory syndrome in children (MIS-C). Administrative databases offer an opportunity to conduct generalizable research; however, identifying patients with MIS-C is challenging.
We developed and validated algorithms to identify MIS-C hospitalizations in administrative databases. We developed 10 approaches using diagnostic codes and medication billing data and applied them to the Pediatric Health Information System from January 2020 to August 2021. We reviewed medical records at 7 geographically diverse hospitals to compare potential cases of MIS-C identified by algorithms to each participating hospital's list of patients with MIS-C (used for public health reporting).
The sites had 245 hospitalizations for MIS-C in 2020 and 358 additional MIS-C hospitalizations through August 2021. One algorithm for the identification of cases in 2020 had a sensitivity of 82%, a low false positive rate of 22%, and a positive predictive value (PPV) of 78%. For hospitalizations in 2021, the sensitivity of the MIS-C diagnosis code was 98% with 84% PPV.
We developed high-sensitivity algorithms to use for epidemiologic research and high-PPV algorithms for comparative effectiveness research. Accurate algorithms to identify MIS-C hospitalizations can facilitate important research for understanding this novel entity as it evolves during new waves.
个别儿童医院收治的儿童多系统炎症综合征 (MIS-C) 患者数量较少。行政数据库为进行可推广的研究提供了机会;然而,识别 MIS-C 患者具有挑战性。
我们开发并验证了用于在行政数据库中识别 MIS-C 住院的算法。我们使用诊断代码和药物计费数据开发了 10 种方法,并将其应用于 2020 年 1 月至 2021 年 8 月的儿科健康信息系统。我们在 7 个地理位置不同的医院审查了病历,以比较算法识别的 MIS-C 疑似病例与每个参与医院的 MIS-C 患者名单(用于公共卫生报告)。
这些医院在 2020 年有 245 例 MIS-C 住院病例,截至 2021 年 8 月又有 358 例 MIS-C 住院病例。2020 年用于识别病例的一种算法的敏感性为 82%,假阳性率低至 22%,阳性预测值 (PPV) 为 78%。对于 2021 年的住院病例,MIS-C 诊断代码的敏感性为 98%,PPV 为 84%。
我们开发了高敏感性算法用于流行病学研究,高 PPV 算法用于比较有效性研究。准确的 MIS-C 住院识别算法可以促进重要的研究,以了解这种新实体在新一波浪潮中不断演变的情况。