文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于两阶段集成深度学习框架的桡骨远端骨折自动分类。

Automatic classification of distal radius fracture using a two-stage ensemble deep learning framework.

机构信息

CSIRO Australian e-Health Research Centre, Herston, QLD, Australia.

Ingham Institute for Applied Medical Research, Sydney, NSW, Australia.

出版信息

Phys Eng Sci Med. 2023 Jun;46(2):877-886. doi: 10.1007/s13246-023-01261-4. Epub 2023 Apr 27.


DOI:10.1007/s13246-023-01261-4
PMID:37103672
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10209228/
Abstract

Distal radius fractures (DRFs) are one of the most common types of wrist fracture and can be subdivided into intra- and extra-articular fractures. Compared with extra-articular DRFs which spare the joint surface, intra-articular DRFs extend to the articular surface and can be more difficult to treat. Identification of articular involvement can provide valuable information about the characteristics of fracture patterns. In this study, a two-stage ensemble deep learning framework was proposed to differentiate intra- and extra-articular DRFs automatically on posteroanterior (PA) view wrist X-rays. The framework firstly detects the distal radius region of interest (ROI) using an ensemble model of YOLOv5 networks, which imitates the clinicians' search pattern of zooming in on relevant regions to assess abnormalities. Secondly, an ensemble model of EfficientNet-B3 networks classifies the fractures in the detected ROIs into intra- and extra-articular. The framework achieved an area under the receiver operating characteristic curve of 0.82, an accuracy of 0.81, a true positive rate of 0.83 and a false positive rate of 0.27 (specificity of 0.73) for differentiating intra- from extra-articular DRFs. This study has demonstrated the potential in automatic DRF characterization using deep learning on clinically acquired wrist radiographs and can serve as a baseline for further research in incorporating multi-view information for fracture classification.

摘要

桡骨远端骨折(DRF)是最常见的腕部骨折类型之一,可分为关节内和关节外骨折。与不涉及关节面的关节外 DRF 相比,关节内 DRF 延伸至关节面,治疗难度更大。确定关节受累情况可以提供有关骨折模式特征的有价值信息。在这项研究中,提出了一种两阶段集成深度学习框架,用于在前后位(PA)腕关节 X 光片上自动区分关节内和关节外 DRF。该框架首先使用 YOLOv5 网络的集成模型检测桡骨远端感兴趣区域(ROI),该模型模仿了临床医生放大相关区域以评估异常的搜索模式。其次,使用 EfficientNet-B3 网络的集成模型将检测到的 ROI 中的骨折分为关节内和关节外。该框架在区分关节内和关节外 DRF 方面的受试者工作特征曲线下面积为 0.82,准确率为 0.81,真阳性率为 0.83,假阳性率为 0.27(特异性为 0.73)。这项研究证明了在临床获得的腕关节 X 光片上使用深度学习自动进行 DRF 特征描述的潜力,并可以作为进一步研究的基础,以整合多视图信息进行骨折分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1d/10209228/3fde0febe91d/13246_2023_1261_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1d/10209228/20ca00ae979e/13246_2023_1261_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1d/10209228/fbd23986450c/13246_2023_1261_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1d/10209228/883cbde27aaf/13246_2023_1261_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1d/10209228/31470fbea109/13246_2023_1261_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1d/10209228/f889b31e1ee3/13246_2023_1261_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1d/10209228/4616283f4449/13246_2023_1261_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1d/10209228/3fde0febe91d/13246_2023_1261_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1d/10209228/20ca00ae979e/13246_2023_1261_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1d/10209228/fbd23986450c/13246_2023_1261_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1d/10209228/883cbde27aaf/13246_2023_1261_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1d/10209228/31470fbea109/13246_2023_1261_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1d/10209228/f889b31e1ee3/13246_2023_1261_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1d/10209228/4616283f4449/13246_2023_1261_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa1d/10209228/3fde0febe91d/13246_2023_1261_Fig7_HTML.jpg

相似文献

[1]
Automatic classification of distal radius fracture using a two-stage ensemble deep learning framework.

Phys Eng Sci Med. 2023-6

[2]
Description of unusual osteochondral laminar fragment patterns in Distal Radius fractures.

Orthop Traumatol Surg Res. 2022-11

[3]
Considerations When Diagnosing and Treating an Extra-Articular Fracture of Distal Radius Based on Plain Radiographs.

J Hand Surg Asian Pac Vol. 2020-12

[4]
MDCT evaluation of distal radius fractures and their association with carpal and distal ulnar fractures.

Emerg Radiol. 2023-10

[5]
Analyses of fracture line distribution in intra-articular distal radius fractures.

Radiol Med. 2019-3-22

[6]
Intra-articular fractures of the distal radius evaluated by computed tomography.

J Hand Surg Am. 2011-11

[7]
Prognostic Factors Affecting Clinical Outcomes of Arthroscopic Assisted Reduction and Volar Plating through Preservation of Pronator Quadratus for Intra-Articular Distal Radius Fracture.

J Hand Surg Asian Pac Vol. 2020-9

[8]
Plate presetting and arthroscopic reduction technique (PART) for treatment of distal radius fractures.

Handchir Mikrochir Plast Chir. 2014-10

[9]
Treatment of intra-articular fracture of distal radius fractures with fluoroscopic only or combined with arthroscopic control: A prospective tomodensitometric comparative study of 40 patients.

Orthop Traumatol Surg Res. 2017-12-11

[10]
Displaced intra-articular fractures involving the volar rim of the distal radius.

J Hand Surg Am. 2015-1

引用本文的文献

[1]
Open-source convolutional neural network to classify distal radial fractures according to the AO/OTA classification on plain radiographs.

Eur J Trauma Emerg Surg. 2025-7-21

[2]
Integrating Artificial Intelligence and Virtual Reality in Orthopedic Surgery: A Comprehensive Review.

HSS J. 2025-6-17

[3]
Machine learning-based prediction of the necessity for the surgical treatment of distal radius fractures.

J Orthop Surg Res. 2025-4-26

[4]
A Neural Network Model for Intelligent Classification of Distal Radius Fractures Using Statistical Shape Model Extraction Features.

Orthop Surg. 2025-5

[5]
Artificial intelligence in fracture detection on radiographs: a literature review.

Jpn J Radiol. 2025-4

[6]
[Study on automatic and rapid diagnosis of distal radius fracture by X-ray].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024-8-25

[7]
AI for detection, classification and prediction of loss of alignment of distal radius fractures; a systematic review.

Eur J Trauma Emerg Surg. 2024-12

[8]
Deep Learning Model for Automatic Identification and Classification of Distal Radius Fracture.

J Imaging Inform Med. 2024-12

本文引用的文献

[1]
Anatomy, Biomechanics, and Loads of the Wrist Joint.

Life (Basel). 2022-1-27

[2]
Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.

Sensors (Basel). 2022-1-8

[3]
AI-based detection and classification of distal radius fractures using low-effort data labeling: evaluation of applicability and effect of training set size.

Eur Radiol. 2021-9

[4]
Deep learning detection of subtle fractures using staged algorithms to mimic radiologist search pattern.

Skeletal Radiol. 2022-2

[5]
Automated medical diagnosis of COVID-19 through EfficientNet convolutional neural network.

Appl Soft Comput. 2020-11

[6]
Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments.

Acta Orthop. 2019-4-3

[7]
Distal radius fractures are difficult to classify.

Injury. 2018-6

[8]
Traumatic fractures in adults: missed diagnosis on plain radiographs in the Emergency Department.

Acta Biomed. 2018-1-19

[9]
Fracture and Dislocation Classification Compendium-2018.

J Orthop Trauma. 2018-1

[10]
Fracture of the distal radius: epidemiology and premanagement radiographic characterization.

AJR Am J Roentgenol. 2014-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索