CSIRO Australian e-Health Research Centre, Herston, QLD, Australia.
Ingham Institute for Applied Medical Research, Sydney, NSW, Australia.
Phys Eng Sci Med. 2023 Jun;46(2):877-886. doi: 10.1007/s13246-023-01261-4. Epub 2023 Apr 27.
Distal radius fractures (DRFs) are one of the most common types of wrist fracture and can be subdivided into intra- and extra-articular fractures. Compared with extra-articular DRFs which spare the joint surface, intra-articular DRFs extend to the articular surface and can be more difficult to treat. Identification of articular involvement can provide valuable information about the characteristics of fracture patterns. In this study, a two-stage ensemble deep learning framework was proposed to differentiate intra- and extra-articular DRFs automatically on posteroanterior (PA) view wrist X-rays. The framework firstly detects the distal radius region of interest (ROI) using an ensemble model of YOLOv5 networks, which imitates the clinicians' search pattern of zooming in on relevant regions to assess abnormalities. Secondly, an ensemble model of EfficientNet-B3 networks classifies the fractures in the detected ROIs into intra- and extra-articular. The framework achieved an area under the receiver operating characteristic curve of 0.82, an accuracy of 0.81, a true positive rate of 0.83 and a false positive rate of 0.27 (specificity of 0.73) for differentiating intra- from extra-articular DRFs. This study has demonstrated the potential in automatic DRF characterization using deep learning on clinically acquired wrist radiographs and can serve as a baseline for further research in incorporating multi-view information for fracture classification.
桡骨远端骨折(DRF)是最常见的腕部骨折类型之一,可分为关节内和关节外骨折。与不涉及关节面的关节外 DRF 相比,关节内 DRF 延伸至关节面,治疗难度更大。确定关节受累情况可以提供有关骨折模式特征的有价值信息。在这项研究中,提出了一种两阶段集成深度学习框架,用于在前后位(PA)腕关节 X 光片上自动区分关节内和关节外 DRF。该框架首先使用 YOLOv5 网络的集成模型检测桡骨远端感兴趣区域(ROI),该模型模仿了临床医生放大相关区域以评估异常的搜索模式。其次,使用 EfficientNet-B3 网络的集成模型将检测到的 ROI 中的骨折分为关节内和关节外。该框架在区分关节内和关节外 DRF 方面的受试者工作特征曲线下面积为 0.82,准确率为 0.81,真阳性率为 0.83,假阳性率为 0.27(特异性为 0.73)。这项研究证明了在临床获得的腕关节 X 光片上使用深度学习自动进行 DRF 特征描述的潜力,并可以作为进一步研究的基础,以整合多视图信息进行骨折分类。
Orthop Traumatol Surg Res. 2022-11
J Hand Surg Asian Pac Vol. 2020-12
Radiol Med. 2019-3-22
J Hand Surg Am. 2011-11
Handchir Mikrochir Plast Chir. 2014-10
J Hand Surg Am. 2015-1
J Orthop Surg Res. 2025-4-26
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024-8-25
Eur J Trauma Emerg Surg. 2024-12
J Imaging Inform Med. 2024-12
Life (Basel). 2022-1-27
Sensors (Basel). 2022-1-8
Appl Soft Comput. 2020-11
Injury. 2018-6
J Orthop Trauma. 2018-1
AJR Am J Roentgenol. 2014-9