School of Cardiovascular and Metabolic Health University of Glasgow Glasgow United Kingdom.
Mayo Clinic Alix School of Medicine Rochester MN.
J Am Heart Assoc. 2023 May 2;12(9):e027896. doi: 10.1161/JAHA.122.027896. Epub 2023 Apr 29.
Background Machine learning (ML) is pervasive in all fields of research, from automating tasks to complex decision-making. However, applications in different specialities are variable and generally limited. Like other conditions, the number of studies employing ML in hypertension research is growing rapidly. In this study, we aimed to survey hypertension research using ML, evaluate the reporting quality, and identify barriers to ML's potential to transform hypertension care. Methods and Results The Harmonious Understanding of Machine Learning Analytics Network survey questionnaire was applied to 63 hypertension-related ML research articles published between January 2019 and September 2021. The most common research topics were blood pressure prediction (38%), hypertension (22%), cardiovascular outcomes (6%), blood pressure variability (5%), treatment response (5%), and real-time blood pressure estimation (5%). The reporting quality of the articles was variable. Only 46% of articles described the study population or derivation cohort. Most articles (81%) reported at least 1 performance measure, but only 40% presented any measures of calibration. Compliance with ethics, patient privacy, and data security regulations were mentioned in 30 (48%) of the articles. Only 14% used geographically or temporally distinct validation data sets. Algorithmic bias was not addressed in any of the articles, with only 6 of them acknowledging risk of bias. Conclusions Recent ML research on hypertension is limited to exploratory research and has significant shortcomings in reporting quality, model validation, and algorithmic bias. Our analysis identifies areas for improvement that will help pave the way for the realization of the potential of ML in hypertension and facilitate its adoption.
背景 机器学习(ML)在研究的各个领域都无处不在,从自动化任务到复杂决策。然而,不同专业的应用是多变的,通常是有限的。与其他情况一样,使用 ML 进行高血压研究的研究数量正在迅速增加。在这项研究中,我们旨在调查使用 ML 的高血压研究,评估报告质量,并确定 ML 改变高血压治疗的潜力的障碍。
方法和结果 应用“机器学习分析网络和谐理解”问卷调查了 2019 年 1 月至 2021 年 9 月期间发表的 63 篇与 ML 相关的高血压研究文章。最常见的研究主题是血压预测(38%)、高血压(22%)、心血管结局(6%)、血压变异性(5%)、治疗反应(5%)和实时血压估计(5%)。文章的报告质量参差不齐。只有 46%的文章描述了研究人群或衍生队列。大多数文章(81%)报告了至少 1 项性能指标,但只有 40%的文章提出了任何校准指标。有 30 篇文章(48%)提到了符合伦理、患者隐私和数据安全法规的问题。只有 14%的文章使用了地理位置或时间上不同的验证数据集。没有一篇文章解决算法偏差问题,只有 6 篇文章承认存在偏差风险。
结论 最近关于高血压的 ML 研究仅限于探索性研究,在报告质量、模型验证和算法偏差方面存在重大缺陷。我们的分析确定了需要改进的领域,这将有助于为 ML 在高血压中的潜力的实现铺平道路,并促进其采用。