Suppr超能文献

降压药物推荐用于降低高血压患者的动脉僵硬度:基于机器学习的多队列(RIGIPREV)研究。

Antihypertensive Drug Recommendations for Reducing Arterial Stiffness in Patients With Hypertension: Machine Learning-Based Multicohort (RIGIPREV) Study.

机构信息

CarVasCare Research Group, Facultad de Enfermería de Cuenca, Universidad de Castilla-La Mancha, Cuenca, Spain.

Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile.

出版信息

J Med Internet Res. 2024 Nov 25;26:e54357. doi: 10.2196/54357.

Abstract

BACKGROUND

High systolic blood pressure is one of the leading global risk factors for mortality, contributing significantly to cardiovascular diseases. Despite advances in treatment, a large proportion of patients with hypertension do not achieve optimal blood pressure control. Arterial stiffness (AS), measured by pulse wave velocity (PWV), is an independent predictor of cardiovascular events and overall mortality. Various antihypertensive drugs exhibit differential effects on PWV, but the extent to which these effects vary depending on individual patient characteristics is not well understood. Given the complexity of selecting the most appropriate antihypertensive medication for reducing PWV, machine learning (ML) techniques offer an opportunity to improve personalized treatment recommendations.

OBJECTIVE

This study aims to develop an ML model that provides personalized recommendations for antihypertensive medications aimed at reducing PWV. The model considers individual patient characteristics, such as demographic factors, clinical data, and cardiovascular measurements, to identify the most suitable antihypertensive agent for improving AS.

METHODS

This study, known as the RIGIPREV study, used data from the EVA, LOD-DIABETES, and EVIDENT studies involving individuals with hypertension with baseline and follow-up measurements. Antihypertensive drugs were grouped into classes such as angiotensin-converting enzyme inhibitors (ACEIs), angiotensin receptor blockers (ARBs), β-blockers, diuretics, and combinations of diuretics with ACEIs or ARBs. The primary outcomes were carotid-femoral and brachial-ankle PWV, while the secondary outcomes included various cardiovascular, anthropometric, and biochemical parameters. A multioutput regressor using 6 random forest models was used to predict the impact of each antihypertensive class on PWV reduction. Model performance was evaluated using the coefficient of determination (R) and mean squared error.

RESULTS

The random forest models exhibited strong predictive capabilities, with internal validation yielding R values between 0.61 and 0.74, while external validation showed a range of 0.26 to 0.46. The mean squared values ranged from 0.08 to 0.22 for internal validation and from 0.29 to 0.45 for external validation. Variable importance analysis revealed that glycated hemoglobin and weight were the most critical predictors for ACEIs, while carotid-femoral PWV and total cholesterol were key variables for ARBs. The decision tree model achieved an accuracy of 84.02% in identifying the most suitable antihypertensive drug based on individual patient characteristics. Furthermore, the system's recommendations for ARBs matched 55.3% of patients' original prescriptions.

CONCLUSIONS

This study demonstrates the utility of ML techniques in providing personalized treatment recommendations for antihypertensive therapy. By accounting for individual patient characteristics, the model improves the selection of drugs that control blood pressure and reduce AS. These findings could significantly aid clinicians in optimizing hypertension management and reducing cardiovascular risk. However, further studies with larger and more diverse populations are necessary to validate these results and extend the model's applicability.

摘要

背景

收缩压升高是全球导致死亡的主要风险因素之一,对心血管疾病有重大影响。尽管在治疗方面取得了进展,但很大一部分高血压患者并未达到理想的血压控制水平。脉搏波速度(PWV)测量的动脉僵硬度(AS)是心血管事件和总体死亡率的独立预测因素。各种降压药物对 PWV 有不同的影响,但这些影响在多大程度上取决于个体患者的特征尚不清楚。鉴于为降低 PWV 选择最合适的降压药物具有复杂性,机器学习(ML)技术为改善个性化治疗建议提供了机会。

目的

本研究旨在开发一种 ML 模型,为降低 PWV 的降压药物提供个性化建议。该模型考虑了个体患者的特征,如人口统计学因素、临床数据和心血管测量结果,以确定最适合改善 AS 的降压药物。

方法

这项名为 RIGIPREV 的研究使用了来自 EVA、LOD-DIABETES 和 EVIDENT 研究的数据,这些研究涉及有基线和随访测量的高血压患者。降压药物被分为 ACEI、ARB、β受体阻滞剂、利尿剂和利尿剂与 ACEI 或 ARB 的组合等类别。主要结果是颈动脉-股动脉和肱动脉-踝动脉 PWV,次要结果包括各种心血管、人体测量和生化参数。使用 6 个随机森林模型的多输出回归器来预测每种降压类别对 PWV 降低的影响。使用决定系数(R)和均方误差评估模型性能。

结果

随机森林模型表现出很强的预测能力,内部验证的 R 值在 0.61 到 0.74 之间,外部验证的 R 值在 0.26 到 0.46 之间。内部验证的均方值范围为 0.08 到 0.22,外部验证的均方值范围为 0.29 到 0.45。变量重要性分析显示,糖化血红蛋白和体重是 ACEI 的最重要预测因素,而颈动脉-股动脉 PWV 和总胆固醇是 ARB 的关键变量。决策树模型在根据个体患者特征识别最合适的降压药物方面达到了 84.02%的准确率。此外,该系统对 ARB 的建议与 55.3%的患者原始处方相匹配。

结论

本研究证明了机器学习技术在提供降压治疗个性化治疗建议方面的实用性。通过考虑个体患者的特征,该模型提高了控制血压和降低 AS 的药物选择。这些发现可以显著帮助临床医生优化高血压管理并降低心血管风险。然而,需要更大和更多样化的人群研究来验证这些结果并扩展模型的适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ca10/11629035/1625170b827c/jmir_v26i1e54357_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验