Suppr超能文献

基于图优化和解剖一致性循环的椎体定位、分割和识别。

Vertebrae localization, segmentation and identification using a graph optimization and an anatomic consistency cycle.

机构信息

Inria, Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, France.

Inria, Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, France.

出版信息

Comput Med Imaging Graph. 2023 Jul;107:102235. doi: 10.1016/j.compmedimag.2023.102235. Epub 2023 Apr 17.

Abstract

Vertebrae localization, segmentation and identification in CT images is key to numerous clinical applications. While deep learning strategies have brought to this field significant improvements over recent years, transitional and pathological vertebrae are still plaguing most existing approaches as a consequence of their poor representation in training datasets. Alternatively, proposed non-learning based methods take benefit of prior knowledge to handle such particular cases. In this work we propose to combine both strategies. To this purpose we introduce an iterative cycle in which individual vertebrae are recurrently localized, segmented and identified using deep-networks, while anatomic consistency is enforced using statistical priors. In this strategy, the transitional vertebrae identification is handled by encoding their configurations in a graphical model that aggregates local deep-network predictions into an anatomically consistent final result. Our approach achieves the state-of-the-art results on the VerSe20 challenge benchmark, and outperforms all methods on transitional vertebrae as well as the generalization to the VerSe19 challenge benchmark. Furthermore, our method can detect and report inconsistent spine regions that do not satisfy the anatomic consistency priors. Our code and model are openly available for research purposes..

摘要

在 CT 图像中对椎体进行定位、分割和识别是许多临床应用的关键。虽然深度学习策略近年来为该领域带来了重大改进,但由于训练数据集中对过渡性和病理性椎体的代表性较差,大多数现有方法仍然受到困扰。或者,提出的基于非学习的方法利用先验知识来处理这些特殊情况。在这项工作中,我们建议将这两种策略结合起来。为此,我们引入了一个迭代循环,在该循环中,使用深度网络反复定位、分割和识别单个椎体,同时使用统计先验来强制实现解剖一致性。在这种策略中,通过将过渡性椎体的配置编码到图形模型中,将局部深度网络的预测汇总到解剖一致的最终结果中,从而处理过渡性椎体的识别。我们的方法在 VerSe20 挑战赛基准上取得了最先进的结果,并在过渡性椎体以及对 VerSe19 挑战赛基准的泛化方面优于所有方法。此外,我们的方法可以检测和报告不符合解剖一致性先验的不一致脊柱区域。我们的代码和模型可公开用于研究目的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验