Image Guided Therapy, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland.
Department of Neurosurgery, Bern University Hospital and University of Bern, Bern, Switzerland.
Neurosurg Rev. 2023 May 3;46(1):101. doi: 10.1007/s10143-023-01995-5.
BACKGROUND: With the increasing complexity and decreasing exposure to intracranial aneurysm surgery, training and maintenance of the surgical skills have become challenging. This review elaborated on simulation training for intracranial aneurysm clipping. METHODS: A systematic review was performed according to the PRISMA guidelines to identify studies on aneurysm clipping training using models and simulators. The primary outcome was the identification of the predominant modes of the simulation process, models, and training methods associated with a microsurgical learning curve. The secondary outcomes included assessments of the validation of such simulators and the learning capability from the use of such simulators. RESULTS: Of the 2068 articles screened, 26 studies met the inclusion criteria. The chosen reports used a wide range of simulation approaches including ex vivo methods (n = 6); virtual reality (VR) platforms (n = 11); and static (n = 6) and dynamic (n = 3) 3D-printed aneurysm models (n = 6). The ex vivo training methods have limited availability, VR simulators lack haptics and tactility, while 3D static models lack important microanatomical components and the simulation of blood flow. 3D dynamic models including pulsatile flow are reusable and cost-effective but miss microanatomical components. CONCLUSIONS: The existing training methods are heterogenous and do not realistically simulate the complete microsurgical workflow. The current simulations lack certain anatomical features and crucial surgical steps. Future research should focus on developing and validating a reusable, cost-effective training platform. No systematic validation method exists for the different training models, so there is a need to build homogenous assessment tools and validate the role of simulation in education and patient safety.
背景:随着颅内动脉瘤手术的复杂性不断增加,手术技能的培训和保持变得具有挑战性。本综述详细阐述了颅内动脉瘤夹闭的模拟训练。
方法:根据 PRISMA 指南进行系统综述,以确定使用模型和模拟器进行动脉瘤夹闭训练的研究。主要结果是确定模拟过程、模型和与显微手术学习曲线相关的培训方法的主要模式。次要结果包括评估此类模拟器的验证以及使用此类模拟器的学习能力。
结果:在筛选出的 2068 篇文章中,有 26 篇符合纳入标准。所选报告使用了广泛的模拟方法,包括离体方法(n=6);虚拟现实(VR)平台(n=11);以及静态(n=6)和动态(n=3)3D 打印动脉瘤模型(n=6)。离体培训方法的可用性有限,VR 模拟器缺乏触觉和触感,而 3D 静态模型缺乏重要的显微解剖成分和血流模拟。包括脉动流的 3D 动态模型可重复使用且具有成本效益,但缺少显微解剖成分。
结论:现有的培训方法具有异质性,不能真实模拟完整的显微手术流程。目前的模拟缺乏某些解剖特征和关键的手术步骤。未来的研究应集中在开发和验证一种可重复使用且具有成本效益的培训平台上。不同的培训模型没有系统的验证方法,因此需要建立同质的评估工具,并验证模拟在教育和患者安全中的作用。
Neurosurg Rev. 2023-5-3
JBI Database System Rev Implement Rep. 2016-4
Cochrane Database Syst Rev. 2012-6-13
World Neurosurg. 2018-2
Health Technol Assess. 2006-9
Acta Neurochir (Wien). 2024-10-19
Neurosurg Rev. 2024-10-12
Diagnostics (Basel). 2024-6-29
Oper Neurosurg (Hagerstown). 2024-6-1
Surg Neurol Int. 2023-12-22
World Neurosurg. 2022-2
Oper Neurosurg (Hagerstown). 2021-11-15
Int J Comput Assist Radiol Surg. 2021-8
World Neurosurg. 2021-3