Suppr超能文献

使用二项迫选(2-AFC)和搜索任务优化欠采样磁共振成像(MRI)中的数据采集。

Optimizing data acquisition in undersampled magnetic resonance imaging (MRI) using two alternative forced choice (2-AFC) and search tasks.

作者信息

Kemp Tavianne M, Kawakita Tetsuya A, Mehta Rehan, Pineda Angel R

机构信息

Mathematics Department, Manhattan College, Riverdale, NY, 10471, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2023 Feb;12467. doi: 10.1117/12.2654323. Epub 2023 Apr 3.

Abstract

Undersampling in the frequency domain (k-space) in MRI accelerates the data acquisition. Typically, a fraction of the low frequencies is fully collected and the rest are equally undersampled. We used a fixed 1D undersampling factor of 5x where 20% of the k-space lines are collected but varied the fraction of the low k-space frequencies that are fully sampled. We used a range of fully acquired low k-space frequencies from 0% where the primary artifact is aliasing to 20% where the primary artifact is blurring in the undersampling direction. Small lesions were placed in the coil k-space data for fluid-attenuated inversion recovery (FLAIR) brain images from the fastMRI database. The images were reconstructed using a multi-coil SENSE reconstruction with no regularization. We conducted a human observer two-alternative forced choice (2-AFC) study with a signal known exactly and a search task with variable backgrounds for each of the acquisitions. We found that for the 2-AFC task, the average human observer did better with more of the low frequencies being fully sampled. For the search task, we found that after an initial improvement from having none of the low frequencies fully sampled to just 2.5%, the performance remained fairly constant. We found that the performance in the two tasks had a different relationship to the acquired data. We also found that the search task was more consistent with common practice in MRI where a range of frequencies between 5% and 10% of the low frequencies are fully sampled.

摘要

磁共振成像(MRI)中在频域(k空间)进行欠采样可加速数据采集。通常,一部分低频数据会被完整采集,其余部分则进行均匀欠采样。我们使用了固定的1D欠采样因子5倍,即采集k空间线的20%,但改变了被完整采样的低k空间频率的比例。我们使用了一系列从0%到20%的完整采集的低k空间频率范围,在0%时主要伪影是混叠,在20%时主要伪影是在欠采样方向上的模糊。从小型病变被放置在来自fastMRI数据库的液体衰减反转恢复(FLAIR)脑图像的线圈k空间数据中。图像使用无正则化的多线圈敏感性编码(SENSE)重建。我们针对每次采集进行了一项人类观察者二选一强制选择(2-AFC)研究,其中信号是确切已知的,还有一个具有可变背景的搜索任务。我们发现对于2-AFC任务,更多的低频被完整采样时,普通人类观察者表现更好。对于搜索任务,我们发现从没有低频被完整采样到仅有2.5%的低频被完整采样,性能有了初步提升后,性能基本保持不变。我们发现这两个任务中的性能与采集的数据有不同的关系。我们还发现搜索任务与MRI的常见做法更一致,即5%至10%的低频范围内的一系列频率被完整采样。

相似文献

3
Predicting human detection performance in magnetic resonance imaging (MRI) with total variation and wavelet sparsity regularizers.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12035. doi: 10.1117/12.2608986. Epub 2022 Apr 4.
4
Modeling human observer detection in undersampled magnetic resonance imaging (MRI).
Proc SPIE Int Soc Opt Eng. 2021 Feb;11599. doi: 10.1117/12.2581076. Epub 2021 Feb 15.
5
Modeling human observer detection in undersampled magnetic resonance imaging reconstruction with total variation and wavelet sparsity regularization.
J Med Imaging (Bellingham). 2023 Jan;10(1):015502. doi: 10.1117/1.JMI.10.1.015502. Epub 2023 Feb 25.
7
Task-based assessment for neural networks: evaluating undersampled MRI reconstructions based on human observer signal detection.
J Med Imaging (Bellingham). 2024 Jul;11(4):045503. doi: 10.1117/1.JMI.11.4.045503. Epub 2024 Aug 13.
8
Accelerating Cartesian MRI by domain-transform manifold learning in phase-encoding direction.
Med Image Anal. 2020 Jul;63:101689. doi: 10.1016/j.media.2020.101689. Epub 2020 Mar 30.
9
KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images.
Magn Reson Med. 2018 Nov;80(5):2188-2201. doi: 10.1002/mrm.27201. Epub 2018 Apr 6.
10
Accelerated coronary MRI with sRAKI: A database-free self-consistent neural network k-space reconstruction for arbitrary undersampling.
PLoS One. 2020 Feb 21;15(2):e0229418. doi: 10.1371/journal.pone.0229418. eCollection 2020.

引用本文的文献

本文引用的文献

1
Modeling human observer detection in undersampled magnetic resonance imaging (MRI).
Proc SPIE Int Soc Opt Eng. 2021 Feb;11599. doi: 10.1117/12.2581076. Epub 2021 Feb 15.
2
Predicting human detection performance in magnetic resonance imaging (MRI) with total variation and wavelet sparsity regularizers.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12035. doi: 10.1117/12.2608986. Epub 2022 Apr 4.
3
Optimizing constrained reconstruction in magnetic resonance imaging for signal detection.
Phys Med Biol. 2021 Jul 16;66(14). doi: 10.1088/1361-6560/ac1021.
5
Paired split-plot designs of multireader multicase studies.
J Med Imaging (Bellingham). 2018 Jul;5(3):031410. doi: 10.1117/1.JMI.5.3.031410. Epub 2018 May 17.
6
Visual-search observers for assessing tomographic x-ray image quality.
Med Phys. 2016 Mar;43(3):1563-75. doi: 10.1118/1.4942485.
7
Multireader multicase variance analysis for binary data.
J Opt Soc Am A Opt Image Sci Vis. 2007 Dec;24(12):B70-80. doi: 10.1364/josaa.24.000b70.
8
Sparse MRI: The application of compressed sensing for rapid MR imaging.
Magn Reson Med. 2007 Dec;58(6):1182-95. doi: 10.1002/mrm.21391.
9
Methods for quantitative image quality evaluation of MRI parallel reconstructions: detection and perceptual difference model.
Magn Reson Imaging. 2007 Jun;25(5):712-21. doi: 10.1016/j.mri.2006.10.019. Epub 2007 Feb 26.
10
Human- and model-observer performance in ramp-spectrum noise: effects of regularization and object variability.
J Opt Soc Am A Opt Image Sci Vis. 2001 Mar;18(3):473-88. doi: 10.1364/josaa.18.000473.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验