Suppr超能文献

利用大型国家数据库对体外支持(一种资源密集型治疗)进行多模态预测。

Multi-modal prediction of extracorporeal support-a resource intensive therapy, utilizing a large national database.

作者信息

Zhu Daoyi, Xue Bing, Shah Neel, Payne Philip Richard Orrin, Lu Chenyang, Said Ahmed Sameh

机构信息

Department of Computer Science and Engineering, Washington University in St Louis, St Louis, MO 63130, United States.

Artificial Intelligence (AI) for Health Institute (AIHealth), Washington University in St Louis, St Louis, MO 63130, United States.

出版信息

JAMIA Open. 2025 Jan 6;8(1):ooae158. doi: 10.1093/jamiaopen/ooae158. eCollection 2025 Feb.

Abstract

OBJECTIVE

Extracorporeal membrane oxygenation (ECMO) is among the most resource-intensive therapies in critical care. The COVID-19 pandemic highlighted the lack of ECMO resource allocation tools. We aimed to develop a continuous ECMO risk prediction model to enhance patient triage and resource allocation.

MATERIAL AND METHODS

We leveraged multimodal data from the National COVID Cohort Collaborative (N3C) to develop a hierarchical deep learning model, labeled "PreEMPT-ECMO" (Prediction, Early Monitoring, and Proactive Triage for ECMO) which integrates static and multi-granularity time series features to generate continuous predictions of ECMO utilization. Model performance was assessed across time points ranging from 0 to 96 hours prior to ECMO initiation, using both accuracy and precision metrics.

RESULTS

Between January 2020 and May 2023, 101 400 patients were included, with 1298 (1.28%) supported on ECMO. PreEMPT-ECMO outperformed established predictive models, including Logistic Regression, Support Vector Machine, Random Forest, and Extreme Gradient Boosting Tree, in both accuracy and precision at all time points. Model interpretation analysis also highlighted variations in feature contributions through each patient's clinical course.

DISCUSSION AND CONCLUSIONS

We developed a hierarchical model for continuous ECMO use prediction, utilizing a large multicenter dataset incorporating both static and time series variables of various granularities. This novel approach reflects the nuanced decision-making process inherent in ECMO initiation and has the potential to be used as an early alert tool to guide patient triage and ECMO resource allocation. Future directions include prospective validation and generalizability on non-COVID-19 refractory respiratory failure, aiming to improve patient outcomes.

摘要

目的

体外膜肺氧合(ECMO)是重症监护中资源消耗最大的治疗方法之一。2019年冠状病毒病(COVID-19)大流行凸显了ECMO资源分配工具的不足。我们旨在开发一种持续的ECMO风险预测模型,以加强患者分诊和资源分配。

材料与方法

我们利用来自国家COVID队列协作组(N3C)的多模态数据开发了一种分层深度学习模型,称为“PreEMPT-ECMO”(ECMO的预测、早期监测和主动分诊),该模型整合了静态和多粒度时间序列特征,以生成ECMO使用的连续预测。使用准确性和精确性指标,在ECMO启动前0至96小时的各个时间点评估模型性能。

结果

在2020年1月至2023年5月期间,纳入了101400例患者,其中1298例(1.28%)接受了ECMO支持。在所有时间点的准确性和精确性方面,PreEMPT-ECMO均优于包括逻辑回归、支持向量机、随机森林和极端梯度提升树在内的既定预测模型。模型解释分析还突出了各特征在每位患者临床过程中的贡献差异。

讨论与结论

我们开发了一种用于持续预测ECMO使用的分层模型,利用了一个大型多中心数据集,该数据集包含各种粒度的静态和时间序列变量。这种新方法反映了ECMO启动过程中固有的细微差别决策过程,并有潜力用作早期警报工具,以指导患者分诊和ECMO资源分配。未来的方向包括对非COVID-19难治性呼吸衰竭进行前瞻性验证和推广,旨在改善患者预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f01/11702361/e3d15a604556/ooae158f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验