Suppr超能文献

KGDAL:用于急性肾损伤-透析患者滚动死亡率预测的知识图谱引导双注意力长短期记忆网络

KGDAL: Knowledge Graph Guided Double Attention LSTM for Rolling Mortality Prediction for AKI-D Patients.

作者信息

Liu Lucas Jing, Ortiz-Soriano Victor, Neyra Javier A, Chen Jin

机构信息

Department of Computer Science, University of Kentucky, Lexington, Kentucky, USA.

Division of Nephrology, Bone and Mineral Metabolism, University of Kentucky Medical Center, Lexington, Kentucky, USA.

出版信息

ACM BCB. 2021 Aug;2021. doi: 10.1145/3459930.3469513.

Abstract

With the rapid accumulation of electronic health record (EHR) data, deep learning (DL) models have exhibited promising performance on patient risk prediction. Recent advances have also demonstrated the effectiveness of knowledge graphs (KG) in providing valuable prior knowledge for further improving DL model performance. However, it is still unclear how KG can be utilized to encode high-order relations among clinical concepts and how DL models can make full use of the encoded concept relations to solve real-world healthcare problems and to interpret the outcomes. We propose a novel knowledge graph guided double attention LSTM model named KGDAL for rolling mortality prediction for critically ill patients with acute kidney injury requiring dialysis (AKI-D). KGDAL constructs a KG-based two-dimension attention in both time and feature spaces. In the experiment with two large healthcare datasets, we compared KGDAL with a variety of rolling mortality prediction models and conducted an ablation study to test the effectiveness, efficacy, and contribution of different attention mechanisms. The results showed that KGDAL clearly outperformed all the compared models. Also, KGDAL-derived patient risk trajectories may assist healthcare providers to make timely decisions and actions. The source code, sample data, and manual of KGDAL are available at https://github.com/lucasliu0928/KGDAL.

摘要

随着电子健康记录(EHR)数据的快速积累,深度学习(DL)模型在患者风险预测方面展现出了良好的性能。最近的进展也证明了知识图谱(KG)在提供有价值的先验知识以进一步提高DL模型性能方面的有效性。然而,目前仍不清楚如何利用KG对临床概念之间的高阶关系进行编码,以及DL模型如何充分利用编码后的概念关系来解决实际医疗保健问题并解释结果。我们提出了一种名为KGDAL的新型知识图谱引导的双注意力长短期记忆模型,用于对需要透析的急性肾损伤危重症患者(AKI-D)进行滚动死亡率预测。KGDAL在时间和特征空间中构建了基于KG的二维注意力。在使用两个大型医疗数据集的实验中,我们将KGDAL与各种滚动死亡率预测模型进行了比较,并进行了消融研究,以测试不同注意力机制的有效性、功效和贡献。结果表明,KGDAL明显优于所有比较模型。此外,KGDAL得出的患者风险轨迹可能有助于医疗保健提供者及时做出决策和采取行动。KGDAL的源代码、样本数据和手册可在https://github.com/lucasliu0928/KGDAL获取。

相似文献

6
Graph fusion prediction of autism based on attentional mechanisms.基于注意力机制的自闭症图谱融合预测
J Biomed Inform. 2023 Oct;146:104484. doi: 10.1016/j.jbi.2023.104484. Epub 2023 Sep 1.
8
Graph Neural Network-Based Diagnosis Prediction.基于图神经网络的诊断预测。
Big Data. 2020 Oct;8(5):379-390. doi: 10.1089/big.2020.0070. Epub 2020 Aug 12.

本文引用的文献

3
The Human Phenotype Ontology in 2021.2021 年人类表型本体论。
Nucleic Acids Res. 2021 Jan 8;49(D1):D1207-D1217. doi: 10.1093/nar/gkaa1043.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验