Suppr超能文献

用于超分辨率心脏磁共振成像分割的多模态潜在空间自对齐

Multi-modal Latent-Space Self-alignment for Super-Resolution Cardiac MR Segmentation.

作者信息

Deng Yu, Wen Yang, Qian Linglong, Anton Esther Puyol, Xu Hao, Pushparajah Kuberan, Ibrahim Zina, Dobson Richard, Young Alistair

机构信息

School of Biomedical Engineering and Imaging Science, King's College London, London, UK.

Animal Imaging and Technology Core, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

出版信息

Stat Atlases Comput Models Heart. 2022 Sep;13593:26-35. doi: 10.1007/978-3-031-23443-9_3. Epub 2023 Jan 28.

Abstract

2D cardiac MR cine images provide data with a high signal-to-noise ratio for the segmentation and reconstruction of the heart. These images are frequently used in clinical practice and research. However, the segments have low resolution in the through-plane direction, and standard interpolation methods are unable to improve resolution and precision. We proposed an end-to-end pipeline for producing high-resolution segments from 2D MR images. This pipeline utilised a bilateral optical flow warping method to recover images in the through-plane direction, while a SegResNet automatically generated segments of the left and right ventricles. A multi-modal latent-space self-alignment network was implemented to guarantee that the segments maintain an anatomical prior derived from unpaired 3D high-resolution CT scans. On 3D MR angiograms, the trained pipeline produced high-resolution segments that preserve an anatomical prior derived from patients with various cardiovascular diseases.

摘要

二维心脏磁共振电影图像为心脏的分割和重建提供了高信噪比的数据。这些图像在临床实践和研究中经常被使用。然而,这些切片在层面方向上分辨率较低,标准的插值方法无法提高分辨率和精度。我们提出了一种端到端的流程,用于从二维磁共振图像生成高分辨率切片。该流程利用双边光流扭曲方法在层面方向上恢复图像,同时使用SegResNet自动生成左心室和右心室的切片。实施了一个多模态潜在空间自对准网络,以确保切片保持从未配对的三维高分辨率CT扫描中获得的解剖学先验信息。在三维磁共振血管造影上,经过训练的流程生成了高分辨率切片,这些切片保留了来自患有各种心血管疾病患者的解剖学先验信息。

相似文献

本文引用的文献

3
Multivariate Mixture Model for Myocardial Segmentation Combining Multi-Source Images.多源图像融合的心肌分段多元混合模型。
IEEE Trans Pattern Anal Mach Intell. 2019 Dec;41(12):2933-2946. doi: 10.1109/TPAMI.2018.2869576. Epub 2018 Sep 10.
7
3D Slicer as an image computing platform for the Quantitative Imaging Network.3D Slicer 作为定量成像网络的图像计算平台。
Magn Reson Imaging. 2012 Nov;30(9):1323-41. doi: 10.1016/j.mri.2012.05.001. Epub 2012 Jul 6.
8
A supervised patch-based approach for human brain labeling.基于监督的斑块方法进行人脑标记。
IEEE Trans Med Imaging. 2011 Oct;30(10):1852-62. doi: 10.1109/TMI.2011.2156806. Epub 2011 May 19.
9
The Holy Grail in diagnostic neuroradiology: 3T or 3D?诊断神经放射学的圣杯:3T 还是 3D?
Eur Radiol. 2011 Mar;21(3):449-56. doi: 10.1007/s00330-010-2034-x. Epub 2010 Dec 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验