Deng Yu, Wen Yang, Qian Linglong, Anton Esther Puyol, Xu Hao, Pushparajah Kuberan, Ibrahim Zina, Dobson Richard, Young Alistair
School of Biomedical Engineering and Imaging Science, King's College London, London, UK.
Animal Imaging and Technology Core, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
Stat Atlases Comput Models Heart. 2022 Sep;13593:26-35. doi: 10.1007/978-3-031-23443-9_3. Epub 2023 Jan 28.
2D cardiac MR cine images provide data with a high signal-to-noise ratio for the segmentation and reconstruction of the heart. These images are frequently used in clinical practice and research. However, the segments have low resolution in the through-plane direction, and standard interpolation methods are unable to improve resolution and precision. We proposed an end-to-end pipeline for producing high-resolution segments from 2D MR images. This pipeline utilised a bilateral optical flow warping method to recover images in the through-plane direction, while a SegResNet automatically generated segments of the left and right ventricles. A multi-modal latent-space self-alignment network was implemented to guarantee that the segments maintain an anatomical prior derived from unpaired 3D high-resolution CT scans. On 3D MR angiograms, the trained pipeline produced high-resolution segments that preserve an anatomical prior derived from patients with various cardiovascular diseases.
二维心脏磁共振电影图像为心脏的分割和重建提供了高信噪比的数据。这些图像在临床实践和研究中经常被使用。然而,这些切片在层面方向上分辨率较低,标准的插值方法无法提高分辨率和精度。我们提出了一种端到端的流程,用于从二维磁共振图像生成高分辨率切片。该流程利用双边光流扭曲方法在层面方向上恢复图像,同时使用SegResNet自动生成左心室和右心室的切片。实施了一个多模态潜在空间自对准网络,以确保切片保持从未配对的三维高分辨率CT扫描中获得的解剖学先验信息。在三维磁共振血管造影上,经过训练的流程生成了高分辨率切片,这些切片保留了来自患有各种心血管疾病患者的解剖学先验信息。