Suppr超能文献

利用机器学习预测结直肠手术中的输尿管损伤。

Prediction of Ureteral Injury During Colorectal Surgery Using Machine Learning.

机构信息

Department of Surgery, University of North Carolina at Chapel Hill, NC, USA.

Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC, USA.

出版信息

Am Surg. 2023 Dec;89(12):5702-5710. doi: 10.1177/00031348231173981. Epub 2023 May 3.

Abstract

BACKGROUND

Ureteral injury (UI) is a rare but devastating complication during colorectal surgery. Ureteral stents may reduce UI but carry risks themselves. Risk predictors for UI could help target the use of stents, but previous efforts have relied on logistic regression (LR), shown moderate accuracy, and used intraoperative variables. We sought to use an emerging approach in predictive analytics, machine learning, to create a model for UI.

METHODS

Patients who underwent colorectal surgery were identified in the National Surgical Quality Improvement Program (NSQIP) database. Patients were split into training, validation, and test sets. The primary outcome was UI. Three machine learning approaches were tested including random forest (RF), gradient boosting (XGB), and neural networks (NN), and compared with traditional LR. Model performance was assessed using area under the curve (AUROC).

RESULTS

The data set included 262,923 patients, of whom 1519 (.578%) experienced UI. Of the modeling techniques, XGB performed the best, with an AUROC score of .774 (95% CI .742-.807) compared with .698 (95% CI .664-.733) for LR. Random forest and NN performed similarly with scores of .738 and .763, respectively. Type of procedure, work RVUs, indication for surgery, and mechanical bowel prep showed the strongest influence on model predictions.

CONCLUSIONS

Machine learning-based models significantly outperformed LR and previous models and showed high accuracy in predicting UI during colorectal surgery. With proper validation, they could be used to support decision making regarding the placement of ureteral stents preoperatively.

摘要

背景

输尿管损伤(UI)是结直肠手术中罕见但严重的并发症。输尿管支架可减少 UI 但自身也存在风险。UI 的风险预测因子有助于确定支架的使用,但先前的研究依赖于逻辑回归(LR),准确性中等,且使用的是术中变量。我们试图使用预测分析、机器学习中的新兴方法来建立 UI 模型。

方法

在国家外科质量改进计划(NSQIP)数据库中确定接受结直肠手术的患者。患者分为训练集、验证集和测试集。主要结局是 UI。测试了三种机器学习方法,包括随机森林(RF)、梯度提升(XGB)和神经网络(NN),并与传统 LR 进行比较。使用曲线下面积(AUROC)评估模型性能。

结果

数据集包括 262923 名患者,其中 1519 名(0.578%)发生 UI。在建模技术中,XGB 的表现最佳,AUROC 得分为 0.774(95%CI 0.742-0.807),而 LR 为 0.698(95%CI 0.664-0.733)。RF 和 NN 的得分分别为 0.738 和 0.763,表现相当。手术类型、工作 RVU、手术指征和机械性肠道准备对模型预测的影响最大。

结论

基于机器学习的模型显著优于 LR 和之前的模型,在预测结直肠手术中的 UI 方面具有很高的准确性。经过适当验证,它们可用于支持术前放置输尿管支架的决策。

相似文献

1
Prediction of Ureteral Injury During Colorectal Surgery Using Machine Learning.
Am Surg. 2023 Dec;89(12):5702-5710. doi: 10.1177/00031348231173981. Epub 2023 May 3.
2
Development and Validation of Machine Learning Models to Predict Readmission After Colorectal Surgery.
J Gastrointest Surg. 2022 Nov;26(11):2342-2350. doi: 10.1007/s11605-022-05443-5. Epub 2022 Sep 7.
3
Application of machine learning to predict postoperative gastrointestinal bleed in bariatric surgery.
Surg Endosc. 2023 Sep;37(9):7121-7127. doi: 10.1007/s00464-023-10156-0. Epub 2023 Jun 13.
4
Improved Prediction of Surgical-Site Infection After Colorectal Surgery Using Machine Learning.
Dis Colon Rectum. 2023 Mar 1;66(3):458-466. doi: 10.1097/DCR.0000000000002559. Epub 2022 Nov 30.
5
Can Predictive Modeling Tools Identify Patients at High Risk of Prolonged Opioid Use After ACL Reconstruction?
Clin Orthop Relat Res. 2020 Jul;478(7):0-1618. doi: 10.1097/CORR.0000000000001251.
7
Differential Performance of Machine Learning Models in Prediction of Procedure-Specific Outcomes.
J Gastrointest Surg. 2022 Aug;26(8):1732-1742. doi: 10.1007/s11605-022-05332-x. Epub 2022 May 4.
9
Estimating Risk of Locoregional Failure and Overall Survival in Anal Cancer Following Chemoradiation: A Machine Learning Approach.
J Gastrointest Surg. 2023 Sep;27(9):1925-1935. doi: 10.1007/s11605-023-05755-0. Epub 2023 Jul 5.

引用本文的文献

3
The Role of Artificial Intelligence in Urogynecology: Current Applications and Future Prospects.
Diagnostics (Basel). 2025 Jan 24;15(3):274. doi: 10.3390/diagnostics15030274.
4
Artificial Intelligence in Surgery: A Systematic Review of Use and Validation.
J Clin Med. 2024 Nov 24;13(23):7108. doi: 10.3390/jcm13237108.
5
Serological Biomarker-Based Machine Learning Models for Predicting the Relapse of Ulcerative Colitis.
J Inflamm Res. 2023 Aug 21;16:3531-3545. doi: 10.2147/JIR.S423086. eCollection 2023.

本文引用的文献

1
Ureteral stent complications - experience on 50,000 procedures.
J Med Life. 2021 Nov-Dec;14(6):769-775. doi: 10.25122/jml-2021-0352.
2
Localizing ureteral catheters for left-sided colectomy and proctectomy: Do the risks justify the benefits?
Am J Surg. 2022 Mar;223(3):505-508. doi: 10.1016/j.amjsurg.2021.12.025. Epub 2021 Dec 27.
3
Machine learning to guide clinical decision-making in abdominal surgery-a systematic literature review.
Langenbecks Arch Surg. 2022 Feb;407(1):51-61. doi: 10.1007/s00423-021-02348-w. Epub 2021 Oct 29.
5
Iatrogenic Ureteral Injury and Prophylactic Stent Use in Veterans Undergoing Colorectal Surgery.
J Surg Res. 2021 Sep;265:272-277. doi: 10.1016/j.jss.2021.03.054. Epub 2021 May 5.
8
Prophylactic Ureteral Catheters for Colectomy: A National Surgical Quality Improvement Program-Based Analysis.
Dis Colon Rectum. 2018 Jan;61(1):84-88. doi: 10.1097/DCR.0000000000000976.
9
Prophylactic Ureteral Stent Placement vs No Ureteral Stent Placement During Open Colectomy.
JAMA Surg. 2018 Jan 1;153(1):87-90. doi: 10.1001/jamasurg.2017.3477.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验