文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于整合生物信息学分析和机器学习诊断代谢综合征相关骨关节炎的免疫相关基因鉴定。

Identification of immune-associated genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning.

机构信息

The Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China.

The Third Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.

出版信息

Front Immunol. 2023 Apr 17;14:1134412. doi: 10.3389/fimmu.2023.1134412. eCollection 2023.


DOI:10.3389/fimmu.2023.1134412
PMID:37138862
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10150333/
Abstract

BACKGROUND: In the pathogenesis of osteoarthritis (OA) and metabolic syndrome (MetS), the immune system plays a particularly important role. The purpose of this study was to find key diagnostic candidate genes in OA patients who also had metabolic syndrome. METHODS: We searched the Gene Expression Omnibus (GEO) database for three OA and one MetS dataset. Limma, weighted gene co-expression network analysis (WGCNA), and machine learning algorithms were used to identify and analyze the immune genes associated with OA and MetS. They were evaluated using nomograms and receiver operating characteristic (ROC) curves, and finally, immune cells dysregulated in OA were investigated using immune infiltration analysis. RESULTS: After Limma analysis, the integrated OA dataset yielded 2263 DEGs, and the MetS dataset yielded the most relevant module containing 691 genes after WGCNA, with a total of 82 intersections between the two. The immune-related genes were mostly enriched in the enrichment analysis, and the immune infiltration analysis revealed an imbalance in multiple immune cells. Further machine learning screening yielded eight core genes that were evaluated by nomogram and diagnostic value and found to have a high diagnostic value (area under the curve from 0.82 to 0.96). CONCLUSION: Eight immune-related core genes were identified (, , , , , , , and ), and a nomogram for the diagnosis of OA and MetS was established. This research could lead to the identification of potential peripheral blood diagnostic candidate genes for MetS patients who also suffer from OA.

摘要

背景:在骨关节炎(OA)和代谢综合征(MetS)的发病机制中,免疫系统起着特别重要的作用。本研究旨在寻找同时患有代谢综合征的 OA 患者的关键诊断候选基因。

方法:我们在基因表达综合数据库(GEO)中搜索了三个 OA 和一个 MetS 数据集。使用 Limma、加权基因共表达网络分析(WGCNA)和机器学习算法来识别和分析与 OA 和 MetS 相关的免疫基因。使用列线图和受试者工作特征(ROC)曲线进行评估,最后通过免疫浸润分析研究 OA 中失调的免疫细胞。

结果:经过 Limma 分析,整合的 OA 数据集产生了 2263 个差异表达基因,而 WGCNA 产生了最相关的模块,包含 691 个基因,两个数据集共有 82 个交集。免疫相关基因在富集分析中得到了最多的富集,免疫浸润分析显示多种免疫细胞失衡。进一步的机器学习筛选产生了 8 个核心基因,通过列线图和诊断价值进行评估,发现具有较高的诊断价值(曲线下面积从 0.82 到 0.96)。

结论:鉴定出 8 个与免疫相关的核心基因(、、、、、、和),并建立了用于诊断 OA 和 MetS 的列线图。这项研究可能会识别出潜在的外周血诊断候选基因,用于同时患有 OA 和 MetS 的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/47d416edef27/fimmu-14-1134412-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/7584d0380330/fimmu-14-1134412-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/54f77a17f997/fimmu-14-1134412-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/d3aca52af834/fimmu-14-1134412-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/0765f3c0e23e/fimmu-14-1134412-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/221eadcc407f/fimmu-14-1134412-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/d5239b223ed4/fimmu-14-1134412-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/afa90df8f722/fimmu-14-1134412-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/47d416edef27/fimmu-14-1134412-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/7584d0380330/fimmu-14-1134412-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/54f77a17f997/fimmu-14-1134412-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/d3aca52af834/fimmu-14-1134412-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/0765f3c0e23e/fimmu-14-1134412-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/221eadcc407f/fimmu-14-1134412-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/d5239b223ed4/fimmu-14-1134412-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/afa90df8f722/fimmu-14-1134412-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3068/10150333/47d416edef27/fimmu-14-1134412-g008.jpg

相似文献

[1]
Identification of immune-associated genes in diagnosing osteoarthritis with metabolic syndrome by integrated bioinformatics analysis and machine learning.

Front Immunol. 2023

[2]
Identification of Immune-Associated Genes in Diagnosing Aortic Valve Calcification With Metabolic Syndrome by Integrated Bioinformatics Analysis and Machine Learning.

Front Immunol. 2022

[3]
Identification of diagnostic genes and drug prediction in metabolic syndrome-associated rheumatoid arthritis by integrated bioinformatics analysis, machine learning, and molecular docking.

Front Immunol. 2024

[4]
Identification of S100A8 as a common diagnostic biomarkers and exploring potential pathogenesis for osteoarthritis and metabolic syndrome.

Front Immunol. 2023

[5]
Identification of four-gene signature to diagnose osteoarthritis through bioinformatics and machine learning methods.

Cytokine. 2023-9

[6]
Immune-associated biomarkers identification for diagnosing carotid plaque progression with uremia through systematical bioinformatics and machine learning analysis.

Eur J Med Res. 2023-2-23

[7]
Identification of ion channel-related genes as diagnostic markers and potential therapeutic targets for osteoarthritis through bioinformatics and machine learning-based approaches.

Biomarkers. 2024-7

[8]
Identification of aging-related biomarkers and immune infiltration characteristics in osteoarthritis based on bioinformatics analysis and machine learning.

Front Immunol. 2023

[9]
The shared biomarkers and pathways of systemic lupus erythematosus and metabolic syndrome analyzed by bioinformatics combining machine learning algorithm and single-cell sequencing analysis.

Front Immunol. 2022

[10]
Potential diagnostic markers and biological mechanism for osteoarthritis with obesity based on bioinformatics analysis.

PLoS One. 2023

引用本文的文献

[1]
Identification and Experimental Validation of Biomarkers Associated With Mitochondria and Macrophage Polarization in Sepsis.

Emerg Med Int. 2025-5-19

[2]
IRAK3 is upregulated in rheumatoid arthritis synovium and delays the onset of experimental arthritis.

Front Immunol. 2025-4-30

[3]
Advancing osteoarthritis research: the role of AI in clinical, imaging and omics fields.

Bone Res. 2025-4-22

[4]
Screening necroptosis genes influencing osteoarthritis development based on machine learning.

Sci Rep. 2025-3-15

[5]
Decoding Alzheimer's Disease With Depression: Molecular Insights and Therapeutic Target.

J Cell Mol Med. 2025-3

[6]
A multidimensional approach reveals the function of lactylation related genes in osteoarthritis.

Sci Rep. 2025-3-5

[7]
Integrated Transcriptome Analysis Reveals Novel Molecular Signatures for Schizophrenia Characterization.

Adv Sci (Weinh). 2025-1

[8]
Unveiling the bioinformatic genes and their involved regulatory mechanisms in type 2 diabetes combined with osteoarthritis.

Front Immunol. 2024

[9]
Identification of diagnostic genes and drug prediction in metabolic syndrome-associated rheumatoid arthritis by integrated bioinformatics analysis, machine learning, and molecular docking.

Front Immunol. 2024

[10]
Uncovering the shared neuro-immune-related regulatory mechanisms between spinal cord injury and osteoarthritis.

Heliyon. 2024-4-25

本文引用的文献

[1]
Targeting inflammasome-dependent mechanisms as an emerging pharmacological approach for osteoarthritis therapy.

iScience. 2022-11-11

[2]
A current overview of RhoA, RhoB, and RhoC functions in vascular biology and pathology.

Biochem Pharmacol. 2022-12

[3]
Association Between Metabolic Syndrome, Its Components, and Knee Osteoarthritis in Premenopausal and Menopausal Women: A Pilot Study.

Cureus. 2022-7-10

[4]
Low-Grade Inflammation in the Pathogenesis of Osteoarthritis: Cellular and Molecular Mechanisms and Strategies for Future Therapeutic Intervention.

Biomedicines. 2022-5-10

[5]
A Multielement Prognostic Nomogram Based on a Peripheral Blood Test, Conventional MRI and Clinical Factors for Glioblastoma.

Front Neurol. 2022-2-9

[6]
Metabolic Syndrome: Updates on Pathophysiology and Management in 2021.

Int J Mol Sci. 2022-1-12

[7]
The immune microenvironment in cartilage injury and repair.

Acta Biomater. 2022-3-1

[8]
Endothelial Yin Yang 1 Phosphorylation at S118 Induces Atherosclerosis Under Flow.

Circ Res. 2021-12-3

[9]
Exploring Diagnostic Biomarkers and Comorbid Pathogenesis for Osteoarthritis and Metabolic Syndrome via Bioinformatics Approach.

Int J Gen Med. 2021-9-29

[10]
Placenta inflammation is closely associated with gestational diabetes mellitus.

Am J Transl Res. 2021-5-15

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索