Suppr超能文献

保障大数据腹腔镜视频时代的隐私保护:内外区分算法(IODA)的开发与验证。

Ensuring privacy protection in the era of big laparoscopic video data: development and validation of an inside outside discrimination algorithm (IODA).

机构信息

Department for General, Visceral and Transplant Surgery, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120, Heidelberg, Germany.

National Center for Tumor Diseases, Heidelberg, Germany.

出版信息

Surg Endosc. 2023 Aug;37(8):6153-6162. doi: 10.1007/s00464-023-10078-x. Epub 2023 May 5.

Abstract

BACKGROUND

Laparoscopic videos are increasingly being used for surgical artificial intelligence (AI) and big data analysis. The purpose of this study was to ensure data privacy in video recordings of laparoscopic surgery by censoring extraabdominal parts. An inside-outside-discrimination algorithm (IODA) was developed to ensure privacy protection while maximizing the remaining video data.

METHODS

IODAs neural network architecture was based on a pretrained AlexNet augmented with a long-short-term-memory. The data set for algorithm training and testing contained a total of 100 laparoscopic surgery videos of 23 different operations with a total video length of 207 h (124 min ± 100 min per video) resulting in 18,507,217 frames (185,965 ± 149,718 frames per video). Each video frame was tagged either as abdominal cavity, trocar, operation site, outside for cleaning, or translucent trocar. For algorithm testing, a stratified fivefold cross-validation was used.

RESULTS

The distribution of annotated classes were abdominal cavity 81.39%, trocar 1.39%, outside operation site 16.07%, outside for cleaning 1.08%, and translucent trocar 0.07%. Algorithm training on binary or all five classes showed similar excellent results for classifying outside frames with a mean F1-score of 0.96 ± 0.01 and 0.97 ± 0.01, sensitivity of 0.97 ± 0.02 and 0.0.97 ± 0.01, and a false positive rate of 0.99 ± 0.01 and 0.99 ± 0.01, respectively.

CONCLUSION

IODA is able to discriminate between inside and outside with a high certainty. In particular, only a few outside frames are misclassified as inside and therefore at risk for privacy breach. The anonymized videos can be used for multi-centric development of surgical AI, quality management or educational purposes. In contrast to expensive commercial solutions, IODA is made open source and can be improved by the scientific community.

摘要

背景

腹腔镜视频越来越多地被用于外科人工智能(AI)和大数据分析。本研究的目的是通过屏蔽额外的腹部部分来确保腹腔镜手术视频中的数据隐私。开发了一种内外区分算法(IODA),在最大限度地保留剩余视频数据的同时确保隐私保护。

方法

IODA 的神经网络架构基于经过预训练的 AlexNet,并添加了长短期记忆。算法训练和测试的数据集中共有 100 个腹腔镜手术视频,涉及 23 种不同的手术,总视频长度为 207 小时(每个视频 124 分钟±100 分钟),产生了 18,507,217 帧(每个视频 185,965±149,718 帧)。每个视频帧都标记为腹腔、套管、手术部位、清洁外场或半透明套管。算法测试使用分层五折交叉验证。

结果

注释类别的分布为腹腔 81.39%、套管 1.39%、手术部位外 16.07%、清洁外场 1.08%和半透明套管 0.07%。在对二进制或所有五类进行算法训练时,对于分类外部帧,算法都表现出了非常出色的结果,平均 F1 得分为 0.96±0.01 和 0.97±0.01,敏感度分别为 0.97±0.02 和 0.97±0.01,假阳性率分别为 0.99±0.01 和 0.99±0.01。

结论

IODA 能够非常确定地区分内部和外部。特别是,只有少数外部帧被错误分类为内部,因此存在隐私泄露的风险。经过匿名化处理的视频可以用于外科人工智能的多中心开发、质量管理或教育目的。与昂贵的商业解决方案相比,IODA 是开源的,可以由科学界进行改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验